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    In this course you will learn about the basic principles and applications of Thermodynamics 

and Statistical Mechanics. Thermodynamics deals with properties of matter in equilibrium. It 

is based on empirical foundations. Here we deal mainly with transformation of heat into 

mechanical work or vice versa. Thermodynamics deals with equilibrium variables and thus 

there is no reference to the rate of approaching or deviation from equilibrium states. There are 

three laws of thermodynamics that have stood the test of time. Due to changes in temperature 

and pressure we come across changes for equilibrium phases. You shall learn about van der 

waals gas that exhibits phase transitions. Irreversible thermodynamics deals with processes 

that are slightly away from equilibrium. Basic physical quantities like mass, temperature and 

pressure change in space and time. We shall study transport processes that play a central role 

in non-equilibrium processes. Local equilibrium hypothesis plays an important role. Entropy 

balance is important to understand irreversible processes. In the linear region fluxes and 

forces are related linearly via coefficients that satisfy certain symmetry relations called 

Onsager relations. Various thermoelectric phenomena like Seebeck effect, Peltier effect and 

Thomson effect shall be discussed using the principles of non-equilibrium thermodynamics. 

Statistical Mechanics deals with the average properties of large systems. It aims to provide a 

theoretical basis for thermodynamics. Description of micro-states is best done with the help of 

phase space. It is found that phase space fluid of a system moves like an incompressible fluid. 

Statistical mechanics makes use of different kinds of ensembles of identically prepared 

systems. While we normally get the most probable or mean values of various physical 

variables, it is found that there can be small fluctuations about the mean values. The 

fluctuations decrease rapidly with the number of particles in a system under consideration. 

Gibbs distribution reduces to Maxwell Boltzmann distribution in the limit of non interacting 

systems. The entropy of a system is related to the number of accessible micro-states of a large 

system. When mixing of gasses is considered we come across a paradoxical situation called 

PRELUDE 
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Gibbs paradox whose resolution requires us to treat the molecules of a gas as 

indistinguishable. Thus we are lead to Sackur-Tetrode formula for entropy. It is found that 

every quadratic degree of freedom contributes an energy of $\frac{1}{2}KT$ per particle 

under equilibrium  conditions. This is known as equipartition theorem. It can be employed to 

deduce the specific heat of solids etc. We shall also study the basic postulates of quantum 

statics. We shall find the classical limits of quantum statistical distributions. It is found that 

there are two distinct quantum statistics, namely Bose-Einstein and Fermi-Dirac distributions. 

Correspondingly the wave functions satisfy specific symmetry properties. In quantum statics 

we make use of density operator to describe mixed states. Quantum version of Liouville 

theorem is formulated in terms of the density operator. We shall study the conditions satisfied 

in equilibrium. We shall deduce the distribution functions in quantum statistics making use of 

the grand canonical ensemble. The quantum distributions reduce to the classical expression in 

the limit of high temperatures and low densities. We shall evaluate partition functions of 

molecules at normal temperatures etc. 

Fermi-Dirac distribution is applicable to Fermions, i.e., particles with half-odd integer spins. 

It can be applied to study of electrons in metals. Paramagnetic susceptibility can be deduced 

using quantum statistics. We can apply BE statistics to describe a gas of photons thus getting 

the famous Planck's distribution formula. Bosons have this peculiar tendency to crowd 

together. As the temperature of a gas is reduced below a certain value, a certain kind of 

clustering into the lowest possible state happens. It is called Bose-Einstein condensation. We 

shall study that in some detail 
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UNIT 1

1 Thermodynamics and its applications

1.1 Objectives

1.2 Introduction

1.3 Overview of thermodynamics

1.4 Let us sum up

1.5 Key words

1.6 Questions for self study

1.7 Further References

1.1 Objectives

After studying this unit you will be able to

• have an overview of thermodynamics

• understand Maxwell’s relations

• understand specific heats from thermodynamic relations

• know about the laws of thermodynamics

• learn about some applications of thermodynamics

• understand phase transitions

• learn about surface effects in condensation.
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1.2 Introduction

In this unit you shall learn about thermodynamics. Thermodynamics happens to be

a study of heat and matter transfer between equilibrium states. It is a phenomeno-

logical study based on our experiments with macroscopic systems. We make use

of pressure, volume, temperature, entropy etc. to discuss properties of macroscopic

systems. There are differential relations between the variations of the mentioned vari-

ables. They are called Maxwell’s relations. Relations between specific heats can be

established using Maxwell’s relations. There are three laws of thermodynamics. They

are based on careful observations of various systems around us. You shall learn about

them in this unit. There are several applications of thermodynamics. We see matter

in several phases and due to changes in temperature and pressure changes in phase

are observed. You shall learn briefly about phase changes or transitions.

1.3 Overview of thermodynamics

Thermodynamics is mainly an empirical science based on axioms whose validity has

been established by experiments. Just as in classical mechanics we begin with a small

number of premises or laws and deduce other results there-from. Certain fundamental

laws are inferred from experiments and various conclusions are drawn from them in

thermodynamics. Pure thermodynamics is not concerned with the justification of the

fundamental laws. Such an attempt is done in “Statistical Mechanics”.

Thermodynamic results are generally very accurate and hence the science of ther-

modynamics occupies an important place in modern physics and engineering. Ther-

modynamics mainly deals with equilibrium variables of a macroscopic system. Here

we mainly deal with the transformation of heat into mechanical work or vice versa.

Sometimes electrical and magnetic agencies have to be taken into account. In ther-

modynamics attention is focussed on the interior of a complex system in contrast to

external aspects as in mechanics. In thermodynamics one defines the interior prop-

erties by means of a few measurable quantities such as temperature, entropy etc.

Such quantities are called variables of state or thermodynamic variables. Since ther-

modynamics deals with equilibrium variables, there is no reference to the rate of

approaching or deviation from equilibrium states.

Thermodynamic equilibrium

As a system changes, the internal variables such as pressure, volume, temperature

change. Such a change is called change of state. There are several types of equilibria.

When there is no unbalanced force between the system and its surroundings the sys-

tem is said to be in mechanical equilibrium. When forces are unbalanced time has to

2
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be brought in for the description of the system.

If the temperature in all parts of a system is uniform and equal to that of the surround-

ings, the system is said to be in thermal equilibrium. Additionally, if the chemical

composition is uniform throughout a system, the system is said to be in chemical

equilibrium. A system that is in thermal, mechanical and chemical equilibrium is

said to be in thermodynamic equilibrium. It is defined by pressure, volume and tem-

perature of the system without reference to time. These are called thermodynamic

coordinates or variables of the state. In general, a thermodynamic system may be

chemical, magnetic, electrical etc.

A system is said to be homogeneous if it is uniform in every portion of it. On the

other hand, a heterogeneous system is composed of a number of homogeneous sys-

tems separated from one another by surfaces of discontinuity. Each separate part of

the heterogeneous system is called a phase. For example water contained in a closed

vessel has two phases: one liquid phase and another gaseous(vapour) phase over the

liquid surface. We call a system a simple homogeneous system if its internal state can

be specified by two thermodynamic variables like pressure and volume.

Zeroth law of thermodynamics

Temperature is one of the quantities that are required to specify the state of a ther-

modynamic system. Every thermodynamic system must possess a temperature. This

postulate of the existence of temperature is sometimes called zeroth law of thermody-

namics.It is observed that if A and B are two thermodynamic systems in equilibrium,

then they shall possess the same temperature. If A and C are in equilibrium then B

and C happen to be in equilibrium with each other. all three are then characterised

by the same value of temperature. This law makes it possible to compare temperature

by means of a standard device called thermometer.

The equation of state

The thermal state of a simple homogeneous substance body like a fluid or a solid

is characterised by its pressure P and volume V . The temperature T of the system

depends on P and V . Hence out of P , V and T only two are independent. This fact

is written in the form:

f (P, V, T ) = 0 (1)

Equation 1.1 is called the “equation of state”. The function f depends on individual

systems. Please note that an equation of state is not applicable to systems not in

equilibrium. The equation of state of a systems has to be deduced experimentally.

The quantities P , V and T refers to gross or large scale properties of a system that

can be measured. Hence they are called macroscopic coordinates. We do not care

3
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much about the internal constitution of systems in terms of microscopic entities like

atoms and molecules.

Energy and work

Thermodynamics deals with energy and work. Energy can exist in several forms such

as Kinetic energy, mechanical potential energy, chemical energy, electrical energy etc.

It is well known in mechanics that the sum of kinetic and potential energies remains

constant during motion. This result is known as the principle of conservation of en-

ergy. In a dissipative system, mechanical energy is lost due to friction. But physics

tells us that there is no loss of energy as a whole. Friction leads to the production of

heat, which is also a form of energy. This principle of conservation of energy can be

extended to other forms of energy. For example, electrical energy can be transformed

into heat or mechanical energy such that the total sum of all forms of energy remains

constant.

In thermodynamics a system can interact with the surroundings by performing me-

chanical work or by transferring heat. Work in thermodynamics is a macroscopic

concept and can be measured in macroscopic coordinates. Hence it may be called

external work in contrast to internal work which is applicable to work done by one

part of the system on another. It is only the external work that is being considered

in thermodynamics.

Internal energy and heat

There are systems which may show no apparent mechanical energy, but may still be

capable of doing work. They are said to possess internal energy. For example, a

mixture of Hydrogen and Oxygen gasses has no kinetic energy if the system is not

moving, but still the system can do work on explosion. It is due to the internal energy

of the system. In thermodynamics we do not try to find the source of internal energy

but simply take account of its existence.

When a thermodynamic system does any work it loses some of its internal energy

such that

∆U = −∆W (2)

where ∆U is the change in the internal energy and ∆W is the work done by the

system.

It is also assumed that the internal energy of a system is a single valued function of

the variables of state. The energy acquired by a system due to non-conventional ways

is called heat. It can be shown that heat is the energy transferred between the system

and surrounding by the virtue of temperature difference. Heat must be distinguished

from work which is a transfer of energy without a temperature difference. Heat may

4
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enter or leave a system without mechanical changes.

For a thermally insulated system

∆U + ∆W = 0 (3)

where ∆U is the change in the internal energy and ∆W is the work done by the

system. If however, the system is not thermally insulated, some amount of heat ∆Q

will enter the system and hence the net energy entering the system will be

∆U = ∆Q−∆W (4)

or

∆Q = ∆U + ∆W.

This provides a simple way of measuring heat.

The first law of thermodynamics

This is simply the law of conservation of energy applied to a thermodynamic system.

It has been stated in several different ways. The increase in internal energy of a

system is equal to the sum of the work done on the system and the heat added to it.

The work done by a mechanical force is equal to
∫
P dV . If magnetic and electrical

forces are present suitable terms have to be included. It should be noted that the first

law of thermodynamics asserts

(a) heat is a form of internal energy

(b) energy is conserved in thermodynamic changes

The Specific heat of a body

The internal energy is a function of any two of the state variables P, V and T . Hence

we can write

U = f (V, T ) (5)

Differentiating the above equation

dU =

(
∂f

∂T

)
V

dT +

(
∂f

∂V

)
T

dV (6)

For perfect gases
(
∂f
∂V

)
T

= 0, while for a gas obeying vander waal’s equation of state(
∂U
∂V

)
T

= a
V 2 .

Let an amount of heat δQ be added to a thermodynamic system such as a perfect

gas, it expands by volume dV against pressure P . Hence

∆Q = dU + PdV (7)

5
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Substituting for dU from equation 1.6 we get

δQ =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV + P dV (8)

Hence
δQ

dT
=

(
∂U

∂T

)
V

dT +

[
P +

(
∂U

∂V

)
T

]
dV (9)

But δQ
dT

is the specific heat. It depends on the conditions being varied. If pressure is

kept constant we get
(
δQ
dT

)
P

= CP . Thus

CP =

(
∂U

∂T

)
V

+

[
P +

(
∂U

∂V

)
T

](
∂V

∂T

)
P

(10)

But, if heat is supplied at constant volume, we get(
δQ

dT

)
V

=

(
∂U

∂T

)
V

= CV (11)

by definition. Therefore equation 1.10 leads to

CP − CV =

[
P +

(
∂U

∂V

)
T

](
∂V

∂T

)
P

(12)

For a perfect (or ideal) gas PV = RT . Hence
(
∂U
∂V

)
T

= 0 and
(
∂V
∂T

)
P

= R
P

. Therefore

CP − CV = R (13)

The second law of thermodynamics

The second law of thermodynamics deals with the subject of direction in which any

physical or chemical process involving change of energy takes place. Consider the

process indicated below

2H2 +O2 −→ 2H2O + energy (14)

This indicates a chemical reaction in which one mole of O2 combines with two moles

of H2 to produce two moles of water vapour with a release of ∆U amount of energy.

The first law of thermodynamics simply indicates energy conservation in the reaction.

But it can not tell us what direction the reaction takes place. If we have a mixture of

H2, O2 and H2O vapour in arbitrary proportions at same temperature and pressure,

the first law cannot tell us whether some H2 and O2 will combine to form H2, O2 or

some H2, O2 will dissociate into H2 and O2.

As another example consider two bodies A and B at two different temperatures. When

they are brought into contact, the first law states that the heat lost by one body is

equal to the heat gained by the other body. But it does not tell us in which direction

6
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the heat flows. However our experience tells us that heat passes from hotter body

to cooler body wherein we introduce the concept of temperature to define the degree

of hotness of a body. The law that arose out of Carnot’s investigations about the

convertibility of heat to work is generally known as second law of thermodynamics.

We know that mechanical energy and heat are different forms of energy. While me-

chanical energy can be completely converted into heat by a process as friction, it is

not possible to convert heat completely into work. Even by using reversible engines,

which are most efficient engines, only a fraction of heat can be converted into work.

Otherwise it is possible to achieve perpetual motion with heat energy available in

many sources such as ovens, atmosphere etc that are available to us. But perpetual

motion is never attained. This leads to Kelvin-Planck statement of second law:

“ It is impossible to construct a heat engine which, operating in a complete cycle, will

abstract heat from a single body and convert the whole of it to work, without leaving

changes in the working system”.

German scientist Rodolf Clausius in 1854 stated the same law as:

“It is impossible for a self acting machine, unaided by any external agency, to convey

heat from one body to another at a higher temperature, or heat cannot itself pass

from a colder to a warmer body”.

It is clear from our experience of producing heat by stopping a moving body with

the help of friction that ordered motion can be converted into chaotic motion but it

requires a lot of effort to evolve ordered motion from chaotic motion.

The second law of thermodynamics can be used to define the absolute scale of tem-

perature. This was done in 1848 by Lord Kelvin. He found that the ratio of heat

taken in and heat rejected in an ideal Carnot engine depends only on the ratio of the

temperatures involved being independent of the working material. That is

Q1

Q2

=
T1

T2

(15)

Here Q1 and Q2 are the amounts of heat taken in and rejected, respectively at tem-

peratures T1 and T2.

The second law of thermodynamics also lead Clausius to the concept of entropy. He

noted that in a reversible cycle
Q1

T1

=
Q2

T2

(16)

so far as the working substance is concerned.

In going from one thermodynamic state A to another such state B the following

integral ∫ B

A

δQ

T

remains independent of the path in a reversible process. It depends only on the co-

ordinates of A and B hence the entropy S of a state represented by T, V is given by

7
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S − S0 =
∫ T,V
T0,V0

δQ
T

where S0 denotes the entropy at T0 and V0 and δQ is measured along any reversible

process. This definition allows us to measure entropy of equilibrium states only as

non-equilibrium states cannot be connected to a reference (standard) state by a re-

versible process.

Equation 1.16 can also be interpreted as the constancy of entropy in a reversible

process.

Example-1:

Calculate the increase in entropy of an ideal gas in an isothermal reversible expansion

from volume V1 to V2 at temperature T .

By definition, the change in entropy is

∆S =

∫ V2

V1

dU + PdV

T

But dV = 0 in an isothermal process and PV = RT for a mole of an ideal gas.

Hence

∆S =

∫ V2

V1

(
RT

V

)
dV

T

=

∫ V2

V1

R
dV

V

= R ln

(
V2

V1

)

However, the entropy of the universe increases as a result of irreversible process.

Irreversible processes can be mechanical, thermal, chemical or other type.

8
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Example-2:

In heat conduction the entropy of the system increases.

Heat conduction is an irreversible process where some heat, say ∆Q is transferred

from a body of higher temperature T1 to a body at a lower temperature T2. Hence

the change in entropy (Sfinal − Sinitial)

∆S =
∆Q

T2

− ∆Q

T1

∆S = ∆Q

(
1

T2

− 1

T1

)
As T1 > T2 in heat conduction ∆S > 0

From the study of irreversible process of all kinds we arrive at the principle of increase

of entropy:

The entropy of a system of bodies tends to increase in all physical and chemical

process occurring in nature, if we include in the system all bodies which are affected

by the change.

Only in the limiting case of a reversible process entropy remains constant. Sometimes

this principle of increase of entropy is itself called the second law of thermodynamics.

According to Clausius, the second law states that the entropy of the world tends to a

maximum.

The third law of thermodynamics

The zero of the absolute temperature place a special role from a formal and physical

point of view. One has to examine the behaviour of system as T tends to zero in

order to give meaning to entropy. The properties of the systems change distinctly as

approaches absolute zero. The question of whether T = 0 can be attained or cannot

be attained is very important. Study of chemical reactions, that is to say, of the

conditions which obtain at equilibrium indicates that as T → 0 the entropy becomes

independent of the amounts of the various chemical constituents present, so long as

the total amount of matter in the system remains constant. Hence we may state the

third law as : “The entropy of any given system attains the same finite least value

for every state of least energy”.

No system can attain temperature zero. The entropy principle clearly implies that it

is impossible to reduce the absolute temperature of any system to zero. There are a

number of alternative or equivalent statements of the third law. Experiments show

that for any isothermal, reversible process of a condensed system the accompanying

entropy change is a function of temperature that approaches zero as T approaches

zero. Hence we get Nernst-Simon statement of the third law of thermodynamics: “

9
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The entropy change associated with any isothermal, reversible process of a condensed

system approaches zero as the temperature approaches zero.”

Both the above mentioned statements can be shown to be equivalent.

Another way of stating the same law is: “ It is impossible by any procedure, no

matter how idealised, to reduce the entropy of a system to its zero point value in a

finite number of operations.” Many physical and chemical facts substantiate the third

law.

Maxwell’s Relations

These are equations relating the derivatives of thermodynamic variables such as pres-

sure, temperature, volume and entropy.

Let us consider a few mathematical theorems. Let z be a function of x and y. Then

dZ =

(
∂Z

∂x

)
y

dx+

(
∂Z

∂y

)
x

dy (17)

If we write M (x, y) =
(
∂Z
∂x

)
y

and N (x, y) =
(
∂Z
∂y

)
x

then

dZ = M (x, y) dx+N (x, y) dy (18)

Differentiating M with respect to y and N with respect to x we get(
∂M

∂y

)
x

=
∂2Z

∂x∂y(
∂N

∂x

)
y

=
∂2Z

∂x∂y
(19)

Since the two derivatives on the right side of equations 1.18 are equal we conclude

that (
∂M

∂y

)
x

=

(
∂N

∂x

)
y

(20)

This is known as the condition for an exact differential.

If a quantity f is a function of x, y and z and a relation exists among x, y, z and f

can be regarded as a function of any two of x, y and z. Similarly any one of x, y and

z may be considered to be a function of f and one other x, y and z. Therefore,

dx =

(
∂x

∂f

)
y

df +

(
∂x

∂y

)
f

dy (21)

Regarding y as a function of f and z we get

dy =

(
∂y

∂f

)
z

df +

(
∂y

∂z

)
f

dz (22)

10
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Substituting this in equation 1.21 we get

dx =

(
∂x

∂f

)
y

df +

(
∂x

∂y

)
f

[(
∂y

∂f

)
z

df +

(
∂y

∂z

)
f

dz

]
(23)

=

[(
∂x

∂f

)
y

+

(
∂x

∂y

)
f

(
∂y

∂f

)
z

]
df +

(
∂x

∂y

)
f

(
∂y

∂z

)
f

dz

But

dx =

(
∂x

∂f

)
z

df +

(
∂x

∂z

)
f

dz (24)

Equating the dz terms in equation 1.24 and equation 1.23, we get(
∂x

∂y

)
f

(
∂y

∂z

)
f

=

(
∂x

∂z

)
f

.

This can also be written as (
∂x

∂y

)
f

(
∂y

∂z

)
f

(
∂z

∂x

)
f

= 1 (25)

Let us make use of these two theorems.

A thermodynamic system in equilibrium can be described in terms of three variables

(coordinates) P, V and T . For convenience we can also make use of the following

functions

(1) The internal energy U

(2) The enthalpy H = U + PV

(3) The Helmholtz function A = U − TS

(4) The Gibbs function G = H − TS

Any one of these functions may be regarded as a function of any two of P, V and T .

Suppose we are given U and S as two functions of V and T . Then we can eliminate

T between them to obtain U as a function of S and V etc. Hence we may regard any

of the eight quantities P, V, T, S, U,A and G may be expressed in terms of any two

other quantities.

Let us consider a chemical system undergoing an infinitesimal reversible process from

one equilibrium state to another. Then we will have the change in internal energy

dU = dQ− PdV

= TdS − PdV (26)

Since dU is a perfect differential, by using the mathematical theorem derived earlier

we get (
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

(27)

11
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The change in the enthalpy in the process is

dH = dU + PdV + V dP

= TdS + V dP (28)

As dH is a perfect (exact) differential we get(
∂T

∂P

)
S

= −
(
∂V

∂S

)
P

(29)

The change in Helmholtz function can be written as

dA = dU − TdS − SdT

= −PdV − SdT (30)

using the first law of thermodynamics.

As dA is an exact differential, we get(
∂P

∂T

)
V

=

(
∂S

∂V

)
T

(31)

Finally small changes in the Gibbs potential can be written as

dG = dH − TdS − SdT

= V dP − SdT (32)

Since dG is an exact differential we get(
∂V

∂T

)
P

= −
(
∂S

∂P

)
T

(33)

The equations 1.27, 1.29, 1.31 and 1.33 are known as Maxwell’s equations (or rela-

tions). They are useful in deducing some other thermodynamic equations.

As a simple application of Maxwell’s relations consider the change in entropy S (T, V ) :

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

TdS = T

(
∂S

∂T

)
V

dT + T

(
∂S

∂V

)
T

dV (34)

But

T

(
∂S

∂T

)
V

= CV

and Maxwell’s equation 1.31 gives(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

12
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Hence,

TdS = CV dT + T

(
∂P

∂T

)
V

dV

This is known as the first TdS equation.

In a similar way, regarding S as a function of T and P we can write

dS =

(
∂S

∂T

)
P

dT +

(
∂S

∂P

)
T

dP

TdS = T

(
∂S

∂T

)
P

dT + T

(
∂S

∂P

)
T

dP (35)

Using Maxwell’s equation 1.33 we get

TdS = T

(
∂S

∂T

)
P

dT − T
(
∂V

∂T

)
P

TdS = CPdT − T
(
∂V

∂T

)
P

(36)

This is sometimes known as the second TdS equation.

Difference in Heat Capacities

By equating the first and the second TdS equations we get

CPdT − T
(
∂V

∂T

)
P

dP = CV dT + T

(
∂P

∂T

)
V

dV

Hence

(CP − CV ) dT = T

(
∂V

∂T

)
P

dP + T

(
∂P

∂T

)
V

dV

Therefore (
∂T

∂P

)
V

=
T
(
∂V
∂T

)
P

CP − CV
or

CP − CV = T

(
∂V

∂T

)
P

(
∂P

∂T

)
V

Since (
∂P

∂T

)
V

= −
(
∂V

∂T

)
P

(
∂P

∂V

)
T

we get

CP − CV = −T
(
∂V

∂T

)2

P

(
∂P

∂V

)
T

(37)

Equation 1.37 leads to the conclusion that CP −CV /ge0 as for most systems
(
∂P
∂V

)
T
<

0.. It tells us that CP−CV goes to zero as T → 0. that is at absolute zero temperature

both CP and CV are equal. In fact, we generally measure CP in the lab and so CV

13
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can be obtained using a modification of equation 1.37.

Since the coefficient of volume expansion

β =
1

V

(
∂V

∂T

)
p

and the elastic modulus

K = − 1

V

(
∂V

∂P

)
T

We can rewrite equation 1.37 in terms of measurable quantities as

CP − CV =
TV β2

K

Phase transitions

Phase transitions are very common in nature. You are familiar with different phases of

water namely, vapour, liquid and ice. Changes do occur between the phases. Changes

of phase are called phase transitions. They are also useful in industry. The first

microscopically-based understanding of phase transitions is due to Vanderwaals. In

1873 he presented a simple theory for gas-liquid transition.

Let us begin by understanding a phase diagram of a simple substance. A phase

diagram is a representation, typically in a plane of the regions where some substance

is stable in a given phase. The axes are usually intensive variables such as pressure,

temperature, chemical potential etc. Density is sometimes used in the case of fluids.

Different phases are separated by lines indicating phase transitions, or regions where

the system is unstable. The following figure is a typical phase diagram in the pressure-

temperature plane.

The three possible phases - solid, liquid and gas are separated by first order phase

transition lines where two phases coexist at the same time. Phases are indicated by

their names and two special points called the triple point and the critical point are

also shown.

The three lines of coexistence are

(a) Sublimation line

(b) Melting line

(c) Condensation line.

Along the sublimation line the solid coexists with the gas. It exists from zero temper-

ature to the triple point temperature A. On lowering the temperature, at constant

pressure, starting from the gas side, the gas would reach the sublimation line, at which

crystallites begin to form.

14
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Figure 1.1: Phase diagram of water

The melting line is also called fusion line. Here the solid coexists with liquid on cross-

ing this line from the liquid phase the system would begin to crystallise. This line

exists from A upto very high temperature.

The condensation line is called vapour pressure line. Here the gas coexists with liquid.

On crossing the line from the gas side of the system begins to form droplets of liquid

on the condensation line. Conversely from the liquid side, gas bubbles form at the

line, which grow and coalesce until all the material has transformed into gas. This

is also called vapour pressure line because it gives the maximum pressure the system

can stand as a gas for a given temperature.

All the above transitions are first order transitions which are accompanied by a latent

heat and a change in density(or volume). On the other hand, the critical point is such

that there are no discontinuities. Hence a critical point is an example of continuous

phase transition.

1.4 Let us sum up

Thermodynamics deals with changes in equilibrium states due to changes in temper-

ature and matter. It is based on our experiences with materials in nature. There

are three laws of thermodynamics. The first law is nothing but a restatement of the

conservation of energy. Heat is recognised as a form of energy. The second law of ther-

modynamics tells us about the direction of natural processes. It states that entropy

in any process cannot decrease. There are several versions of the second law. The

third law of thermodynamics, also called Nernst theorem states that no system can

attain absolute zero temperature. The existence of temperature sometimes regarded
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as zeroth law of thermodynamics. From the fact that the internal energy and entropy

are perfect differentials (or state variables) it is possible to derive differential relations

between thermodynamic variables. They are called Maxwell’s relations. A gas can

have two different kinds of specific heat namely CP and CV . They can be related by

thermodynamic relations. For an ideal gas we find CP −CV = R. Maxwell’s relations

can be applied to several thermodynamic processes. Changes in state or phase of a

substance can be understood using the concepts of latent heats. Phase changes can

be of two kinds- first order and second order.

1.5 Key words

Temperature: It is a measure of “hotness” or “coldness” of a body

Heat: It is a form of energy that is related to work and temperature

Equilibrium: It is a state that does not change with time

State variables: These are the variables like pressure, volume and temperature that

are used to describe the condition of a thermodynamic system

Internal energy: It is the energy of a system by virtue of having a temperature

Specific heat: It is the amount of heat energy required to raise the temperature of

unit mass of a body by one degree celsius

Entropy: Macroscopically it is related to the ratio of heat energy to the temperature

of a body. It is one of the state variables of a system.

Reversible process: A process that proceeds from one equilibrium state to another

very slowly is called a reversible process

Irreversible process : A process that is not retraceble or reversible is called an

irreversible process

Enthalpy: It is another state variable that is equal to (U + PV ). It is denoted by H

Gibbs function: It is equal to H − TS
Helmholtz function:It is equal to U − TS and denoted by A

Triple point: It is a unique state in which solid, liquid and vapour states of a

substance are in equilibrium.

1.6 Questions for self study

a). What is meant by thermodynamic equilibrium?

b). State the zeroth law of thermodynamics

c). What is meant by an equation of a state?

d). Explain the nature of heat

e). State the first law of thermodynamics
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f). State the second law of thermodynamics

g). Explain the concept of entropy

h). State the third law of thermodynamics

i). Deduce Maxwell’s relations

j). Show that CP − CV = R for an ideal gas

k). Explain the general properties of phase transitions.

1.7 Further References

1). M.W. Zemansky, Heat and thermodynamics, McGraw Hill.

2). Saha and Srivastava, A treatise on heat.

3). C. Kittel, Thermal Physics
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UNIT 2

2 Phase transitions and van der waals equation

2.1 Objectives

2.2 Introduction

2.3 Phase Equilibriums

2.4 Let us sum up

2.5 Key words

2.6 Questions for self study

2.7 Further References

2.1 Objectives

After studying this unit you should be able to

• describe phase equilibrium

• classify phase transitions

• draw phase diagrams

• derive Clausius-Clapeyron equation

• apply Clausius-Clapeyron equation

• describe vander waals equation.

2.2 Introduction

In this unit you will learn about equilibrium properties of several phases of a material.

A phase of a substance is a homogeneous part of a system that exhibits distinct

properties and a well defined boundary with other phases of the same substance.

Examples of a two-phase system a liquid and its saturated vapour, a liquid and its
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crystalline form etc. In general each phase may contain several components. However,

here we shall confine ourselves to a single component. A substance may pass from one

phase to another by change of conditions such as temperature and pressure. Such a

process is called phase transition. We shall study conditions required for equilibrium

of phases. You shall learn about the classification of phase transitions. Clausius-

Clapeyron equation gives the rate of change of pressure with temperature. It has

several applications. Finally you will learn about a simple equation which exhibits

phase transitions. It is called vander waal’s equation of state.

2.3 Phase Equilibriums

Let us derive the conditions for different phases to coexist in equilibrium. Under such

condition no transfer of matter takes place from one phase to another.

 

 

��, ��, �� 
��, ��, �� 

Figure 2.1: One component two phase system

Figure 2.1 shows schematically a one component system existing in two phases. The

entire system is isolated from its surroundings. It has energy E, volume v particle

number N . The two phases in equilibrium have energy, volume and particle numbers

(E1, V1, N1) and (E2, V2, N2) respectively. We get

E = E1 + E2, V = V1 + V2 and N = N1 +N2 (38)

The entropy of the system satisfies

S (E, V,N) = S1 (E1, V1, N1) + S2 (E2, V2, N2) (39)

From equation 2.1 it follows that

S (E, V,N) = S1 (E1, V1, N1) + S2 (E − E1, V − V1, N −N1) (40)

Under equilibrium, the entropy of the system should be maximum. That means

dS = 0 under first order variations in E, V and N . Therefore

dS =

(
∂S1

∂E1

)
N1,V1

dE1 +

(
∂S1

∂V1

)
E1,N1

dV1 +

(
∂S1

∂N1

)
E1,V1

dN1

−
(
∂S2

∂E2

)
N2,V2

dE2 −
(
∂S2

∂V2

)
E2,N2

dV2 −
(
∂S2

∂N2

)
E2,V2

dN2

= 0 (41)
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This can be simplified to

0 =

[(
∂S1

∂E1

)
−
(
∂S2

∂E2

)]
dE1 +

[(
∂S1

∂V1

)
−
(
∂S2

∂V2

)]
dV1

+

[(
∂S1

∂N1

)
−
(
∂S2

∂N2

)]
dN1 (42)

Since E1, V1 and N1 are mutually independent variables, the coefficients of dE1, dV1

and dN1 are zero separately. Hence we get(
∂S1

∂E1

)
−
(
∂S2

∂E2

)
= 0 ;

(
∂S1

∂V1

)
−
(
∂S2

∂V2

)
= 0 ;

(
∂S1

∂N1

)
−
(
∂S2

∂N2

)
= 0 (43)

As ∂S
∂E

= Kβ = 1
T

we conclude from equation T1 = T2 in equilibrium. That means

the two phases must have same temperature.

As ∂S
∂V

= K ∂ lnZ
∂V

= P
T

, it follows from equation 2.6 that pressures are equal in equilib-

rium. Since ∂S
∂N

= − µ
T

, it follows that the chemical potentials are equal in equilibrium.

That is

µ1 (T, P ) = µ2 (T, P ) .

These are the conditions fulfilled under equilibrium.

Classification of phase transitions

Paul Ehrenfest classified phase transitions on the basis of the behaviour of thermo-

dynamic free energy. As Gibbs free energy G = H − TS, for a process that occurs at

constant pressure and temperature

dG =
∑
i

µi dNi (44)

Therefore

µi =
∂G

∂Ni

(45)

Since at phase transition µ remains unchanged, the derivatives of G with respect to

N must be equal. Thus
∂G

∂N1

=
∂G

∂N2

. (46)

However, there is no restriction on the derivatives of G with respect to P and T .

Phase transitions are classified on the basis of the behaviour of these derivatives.

The transition is said to be of first order if the derivatives
(
∂G
∂P

)
T,N

and
(
∂G
∂T

)
P,N

are

discontinuous at the transition point.

If the above derivatives are continuous but higher derivatives are discontinuous at the

transition point, the phase transition is said to be continuous.

The behaviour of Gibbs free energy and entropy at a transition point are shown in

figure 2.2. Here TC denotes the critical temperature.
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Figure 2.2: Variation of Gibbs free energy / Entropy as a function of temperature

Phase Diagrams

The phases that are realised in nature for a given set of independent variables are

those having lowest free energy. The Gibbs free energy is a function of T, P and

N . At constant temperature and pressure, Gibbs free energy is proportional to the

number of particles. That is

G (T, P,N) = N g (T, P ) (47)

where g (T, P ) is Gibbs free energy per particle. Since G = µ N we get

µ = g (T, P ) (48)

Hence the chemical potential will be Gibbs free energy per particle. The equilibrium

conditions can be written as

g1 (T, P ) = g2 (T, P ) (49)

If we have analytic expressions for the chemical potentials of both phases we can

express P as a function of T . That defines a curve in T −P plane. This is illustrated

in figure 2.3. At any point on the curve the two phases can coexist in equilibrium.

Hence such a curve is called phase equilibrium curve. For instance, if the phases are

liquid and vapour, it is called vapour pressure curve. For a solid and its vapour, it

is called sublimation curve. For a solid and liquid it is called fusion curve. As Gibbs

free energy G = N1g1 + N2g2 and g1 = g2 in equilibrium, transfer of particles from

one phase to another does not change G in equilibrium.

A single component system may also exist in three different phases namely, solid liquid

and vapour. In that case

g1 (T, P ) = g2 (T, P ) = g3 (T, P ) (50)
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Figure 2.4: Phase diagram of water

for the three phases. Equation 2.13 defines three equilibrium curves:

g1 = g2, g2 = g3 and g3 = g1

which meet at a point known as triple point. It is shown in figure 2.4

Such a diagram is known as phase diagram. The three phase equilibrium curves divide

the T − P plane into three regions in which solid, liquid and gaseous states are in

stable states. At the triple points having temperature T0 and pressure P0 all the three

phases are in equilibrium. For water this occurs, for example, at T0 = 0.0078 ◦C and

P0 = 0.006 atmosphere. The point C at which the vapour pressure curve terminates

abruptly (i.e C in figure 2.4) is called the critical point. Above this point a substance

can pass continuously from a gaseous state to liquid state without a phase transition.

Clausius-Clapeyron Equation

It has been shown that under equilibrium we have

µ1 (T, P ) = µ2 (T, P )

Differentiating this with respect to temperature

∂µ1

∂T
+
∂µ1

∂P
.
∂P

∂T
=
∂µ2

∂T
+
∂µ2

∂P
.
∂P

∂T
(51)

This simplifies to

−S1 + V1
∂P

∂T
= −S2 + V2

∂P

∂T
(52)

Hence
∂P

∂T
=
S2 − S1

V2 − V1

(53)
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Since δQ = T (S2 − S1) we get

∂P

∂T
=

δQ

T (V2 − V1)
. (54)

This is known as Clausius-Clapeyron equation. This equation gives the rate of change

of pressure along the equilibrium curve. This equation implies a rise in temperature

with pressure
(
i.e ∂P

∂T
> 0
)

if there is absorption of heat accompanied by increase in

volume as in the case of boiling point of water.

On the other hand, V2 < V1 as in the case of melting of ice, the phase transition

temperature decreases with pressure. The slope dP
dT

can take positive or negative

values depending on the nature of the substance.

An application of Clausius-Clapeyron equation

There are several applications of this equation. Let us consider the heat capacity of

vapour in equilibrium.

Since the entropy is a function of pressure and temperature, the equilibrium heat

capacity

Ceq =

(
∂Q

∂T

)
eq

= T

(
∂S

∂T

)
eq

= T

(
∂S

∂T

)
P

+ T

(
∂S

∂P

)
T

(
∂P

∂T

)
eq

(55)

But we have T
(
∂S
∂T

)
P

= CP , the specific heat at constant pressure.

Also,

dE = TdS − PdV

= d (TS)− SdT − d (PV ) + V dP

d (ETS + PV ) = −SdT + V dP

In other words, Gibbs function satisfies

dG = −SdT + V dP

Therefore (
∂G

∂T

)
P

= −S and

(
∂G

∂P

)
T

= V

Using the relation
∂2G

∂P∂T
=

∂2G

∂T∂P

we get

−
(
∂S

∂P

)
T

=

(
∂V

∂T

)
P

(56)
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Substituting
(
∂S
∂P

)
T

into equation 2.18 we get

Ceq = CP − T
(
∂V

∂T

)
P

(
∂P

∂T

)
eq

Assuming that the vapour pressure behaves like an ideal gas and hence using the

equation of state

PV = RT

we get (
∂V

∂T

)
=
R

P
.

Finally, we get

Ceq = CP − T
R

P
.
RδQ

RT 2
.

Ceq = CP −
δQ

T
(57)

Van der waals equation

This equation, though simple, exhibits many essential features of the liquid-vapour

phase transition. The equation is(
P +

a

V 2

)
(V − b) = RT (58)

It can be rewritten as

V 3 −
(
b+

RT

P

)
V 2 +

a

P
V − ab

P
= 0 (59)

As you know, a third degree equation with real coefficients can have either

(a). one real and two complex roots, or

(b). three real roots.

Therefore an isotherm plotted on a P −V plane using equation 2.22 will be a straight

line parallel to V axis either at three points or at one (see figure 2.5).

From the general form of the curves (figure 2.5) it is clear that higher curves correspond

to higher T . With increasing temperature the positions between humps and valleys

decreases. At a particular temperature, called critical temperature TC , the curve

turns into a point of inflexion.

The maxima and minima can be obtained from the equation

P =
RT

V − b
− a

V 2
(60)
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Figure 2.5: Van der Waals isotherms

by setting dP
dV

to zero.

Thus
∂P

∂V
= − RT

(V − b)2 +
2a

V 3
= 0 (61)

Eliminating T between the above two equations we get

P =
a (V − 2b)

V 2
. (62)

This equation gives the locus of the maxima and minima of the family of curves

obtained for different values of T . This locus is shown as the dotted curve as shown

figure 2.5.

This curve ARBQC divides the PV plane into three regions. The region bounded

by AB and the upper point of the critical isotherm represents the liquid phase. The

region located inside the dome shaped curve ABC describes two phase states-liquid

and vapour. The region to the right side of curve BC gives the vapour phase. The

curve ABC is called the coexistence curve. The maximum point B of ABC is obtained

by equating to zero the derivative of P with respect to V in equation 2.25. On

simplification we get the critical values

VC = 3b

PC =
a

27b2
(63)

TC =
8a

27Rb

These values belong to the critical point the curve corresponding to the critical tem-

perature has a point of inflection. At pressures higher than PC and temperatures

above TC , no phase difference exists. At the critical point the two phases become
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identical.

It is found that Van der waals equation of state provides a good fit to experiments

away from the critical point. An interesting feature of Van der waals equation is that it

can be expressed in a universal form using reduced pressure, volume and temperature.

We define the reduced values as

P̄ =
P

PC

V̄ =
V

VC
(64)

T̄ =
T

TC

In terms of P̄ , V̄ and T̄ van der waals equation can be expressed as(
P̄ +

3

V̄ 2

)(
3V̄ − 1

)
= 8T̄ (65)

We can see that specific constants such as a and b are absent giving it an univer-

sal form. this is the statement of law of corresponding states which states that all

fluids when described in terms of reduced parameters obey the same equation of state.

Example:

Given that the critical temperature is 33.2 K, its critical pressure is 1.295 × 106 Pa

and the molar volume in critical state is 6.5× 10−5 m3mole−1 find the van der waals

constants.

Solution: We have

TC =
8a

27Rb
= 33.2 K

PC =
a

27b2
= 1.295× 106 Pa

VC = 3b = 6.5× 10−5 m3mole−1

b =
6.5× 10−5

3
= 2.16× 10−5 m3mol−1

a = 27b2PC = 27
(
2.16× 10−5

)2 (
1.295× 106

)
Thus

a = 1.63× 10−2 m6mol−2

2.4 Let us sum up

A phase of a substance is a homogeneous part of a system that exhibits distinct

properties and has a well defined boundary with other phases of the same substance.

A general phase may contain several components. passing from one phase to another

is called a phase transition. For equilibrium between two phases one should have
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temperature, pressure and chemical potentials equal. A phase transition is said to

be of first order if the derivatives
(
∂G
∂P

)
T,N

and
(
∂G
∂T

)
P,N

are discontinuous at the

transition point. A phase transition is said to be continuous if the above derivatives

are continuous but the higher derivatives are discontinuous at the transition point.

Transfer of particles from one phase to another does not change Gibbs free energy

in equilibrium. At a triple point three phases coexist. Clausius-Clapeyron equation

gives the rate of change of pressure along the equilibrium curve. there are several

applications of the equation. Van der waals equation exhibits many essential features

of liquid-vapour phase transition. The equation of state has a critical point. at higher

pressures and temperatures than the critical ones, no phase difference occurs. Van der

waals equation is found to provide a good fit to experiments away from the critical

point. It can be reduced to a universal form by suitable normalisation.

2.5 Key words

Phase of a substance: It is a homogeneous part of a substance that has distinct

properties. It has a well defined boundary

Gibbs free energy: It is equal to H − TS

Phase equilibrium: The condition under which two phases coexist is called phase

equilibrium

Triple point: The point where three phases are in equilibrium is called a triple point

Critical temperature: It is that temperature where gas and its liquid phase coexist.

2.6 Questions for self study

a) Derive the conditions for a phase equilibrium to exist

b) Draw the phase diagram for water

c) Derive Clausius-Clapeyron equation

d) Discuss the important features of Van der waals equation of state.
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• Allis, Herlin, Thermodynamics and Statistical Mechanics , McGraw-Hill, New

York, 1952.

• A. Sommerfeld, Thermodynamics and Statistical Mechanics , Academic Press,

New York, 1956.

• Chisholm, de Borde An Introduction to Statistical Mechanics , Pergamon, New

York, 1958.

• E. Schrödinger, Statistical Thermodynamics , Cambridge U.P, Cambridge, 1946.

• M.W. Zemansky, Heat and thermodynamics, McGraw Hill.

• Saha and Srivastava, A treatise on heat.
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UNIT 3

3 Irreversible Thermodynamics

3.1 Objectives

3.2 Introduction

3.3 Basic transport equations

3.4 Let us sum up

3.5 Key words

3.6 Questions for self study

3.7 Further References

3.1 Objectives

After studying this unit you should be able to

• understand transport equations which are important in non-equilibrium ther-

modynamics

• understand the local equilibrium hypothesis

• understand balance equation

• understand irreversibility and the arrow of time

• learn about entropy production

• learn about the linear flux-force relations

• understand Onsager reciprocal relations
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3.2 Introduction

Irreversible Thermodynamics, also called non-equilibrium thermodynamics deals with

process that are slightly away from equilibrium. Here basic physical quantities like

mass, temperature, pressure etc are allowed to change from place to place as well as in

time. It aims to provide a thermodynamic support to the classical transport equations

of heat, mass, momentum, electric charge etc. It also provides a systematic description

of the coupling between thermal, mechanical, chemical and electromagnetic effects.

Another goal of irreversible thermodynamics is to study stationary non-equilibrium

dissipative states, whose properties do not depend on time but are characterised by a

non-homogeneous distribution of variables and non-vanishing fluxes. In this unit you

shall learn about transport processes that play a central role in non-equilibrium ther-

modynamics just like the important role played by equations of state in equilibrium

thermodynamics.

The most important hypothesis underlying irreversible thermodynamics is the local

equilibrium hypothesis. You shall learn about it . Entropy balance is important un-

der irreversible processes. Since irreversible processes take place only in one direction

towards entropy increasing direction, it is necessary to understand the root cause of

irreversibility.

In the linear region that we deal with we are lead to accept linear flux-force relations

and work out their consequences. Fluxes and forces are related via coefficients satisfy

certain equations. Their signs are restricted by the laws of thermodynamics. The said

coefficients also satisfy symmetry relations first derived by Onsager in 1931. You will

learn about all these in this unit.

3.3 Basic transport equations

Transport equations describe the amount of heat, mass, electrical charge or other

quantities which are transferred per unit time between different systems and different

regions of a system as a response to a non-homogeneity in temperature T , molar

concentration C, electric potential φe. Historically their development is due to Fourier,

Fick and Ohm. They proposed the following well known laws

~q = −λ~∇T Fourier’s law (66)

~J = −D~∇C Fick’s law (67)

I = σe~∇φe Ohm’s law (68)

Here ~q stands for the heat flux i.e. the amount of internal energy per unit time and

unit area transported by conduction. ~J is the diffusion flux i.e. the amount of matter

expressed in moles, transported per unit time and unit area. I stands for familiar
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electric current i.e. electric charge transported per unit time per unit area. The

coefficients λ,D and σe are called coefficients of thermal conductivity diffusion and

electrical conductivity respectively. Knowledge of these transport coefficients in terms

of temperature, pressure and mass concentrations plays an important role in material

science as well as in daily life. For instance, low thermal conductivity is needed in

better insulation of buildings, diffusion coefficient is crucial in biology as well as pol-

lution dispersal problems. Electrical conductivity is vital in microelectronic devices,

networks, electrical plants etc.

The physical interpretation of the transport equation is rather intuitive: heat flows

from regions of higher temperature to regions at low temperatures. The heat flow

is directly proportional to the temperature gradient. Similarly matter diffuses from

regions with higher mass concentrations to regions with lower concentration. Elec-

tric positive charges move from regions with higher electric potential to regions with

lower potential. The evolution of a system in the course of time and space requires the

knowledge of the balance between incoming and outgoing fluxes. When incoming and

outgoing fluxes are equal, the properties of the system do not change in the course

of time and the system is said to be in non-equilibrium steady state. In equilibrium

all fluxes vanish. It should be noted that the above considerations apply only for so

called conserved quantities, which means absence of production or consumption inside

the system.

Expressions 3.1 − 3.3 of the classical transport laws were originally proposed either

from theoretical considerations or on experimental grounds. Non-equilibrium ther-

modynamics aims to provide a general scheme for the derivation of transport laws

by ensuring their compatibility with thermodynamic laws. For instance thermal con-

ductivity must be positive, otherwise, heat would spontaneously flow from a lower

temperature to a higher temperature in conflict with the second law of thermody-

namics. When λ,D and σe are scalars, they must be positive.

Local equilibrium hypothesis

This is a very important hypothesis of irreversible thermodynamics. According to it,

the local and instantaneous relations between thermodynamic quantities in a system

out of equilibrium are the same as for a uniform system in equilibrium. Explicitly,

consider a system split mentally in a series of cells, which are sufficiently large for

microscopic fluctuations to be negligible but sufficiently small so that equilibrium is

realised to a good approximation in each individual cell.

The local equilibrium hypothesis states that at a given instant of time, equilibrium

is achieved in each individual cell (or each material point). It should be realised that

the state of equilibrium is different from one cell to the other so that exchanges of
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mass and energy are allowed between neighbouring cells.

Another way of describing the situation is in terms of two time scales: the first τm,

denotes the equilibrium time inside one cell. It is of the order of time interval be-

tween two successive collisions between collisions. Typically it is of the order 10−12 S

at normal pressure and temperature. The second characteristic time τM is a macro-

scopic one whose order of magnitude is related to the duration of the experiment.

Typically it is of the order of one second. The ratio between the time scales i.e. τm
τM

is called Deborah number. When this number is very much less than unity the local

equilibrium hypothesis is fully justified.

One consequence of the local equilibrium hypothesis is that all variables defined in

equilibrium such as entropy, temperature, chemical potential etc are also clearly de-

fined outside equilibrium, but they are allowed to vary in time and space. Another

consequence is that the local state variables are related by the same state equations

as in equilibrium. In particular Gibbs relation between entropy and state variables

remains locally valid for each value of time and position.

For example, in the case of a n−component fluid of total mass m, the local Gibbs

equation can be written as

dS = T−1 dU + PT−1 dV − T−1

n∑
K=1

µKdCK (69)

Where S is the entropy per unit mass, U is the specific internal energy and T is the

obsolute temperature. P stands for pressure and V is the specific volume (related to

mass density ρ by V = 1
ρ
). CK = mK

m
is the mass fraction of the substance K, µ is its

chemical potential.

Another consequence follows from the property that, locally, the system is stable.

More generally Gibbs equation takes the form

dS (~r, t) =
∑
i

Γi (~r, t) dai (~r, t) (70)

where ai (~r, t) is an extensive stable variable like u, v, cK while Γi (~r, t) is the corre-

sponding conjugate state variable such as T, P or µK . From kinetic theory point of

view, local equilibrium hypothesis is justified only for conditions where Maxwellian

distribution is approximately maintained.

Entropy balance

In equilibrium thermodynamics, entropy is a well defined function of state only in

equilibrium states or during reversible processes. How to define entropy when a sys-

tem is driven far from the equilibrium? Thanks to the local equilibrium hypothesis,

entropy remains a valuable state function even in non-equilibrium situations.
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Consider an arbitrary body outside equilibrium whose total entropy at time t is S.

The rate of variation of this extensive quantity may be written as the sum of the rate

of exchange with the exterior dSe

dt
and the rate of internal production.n Hence

dS

dt
=
dSe

dt
+
dSi

dt
(71)

The quantity T dSi

dt
is sometimes called uncompensated heat or the rate of dissipation.

Let ~J s denote the entropy flux, i.e. entropy crossing the boundary surface per unit

area in unit time and σs be the rate of production of entropy per unit volume and

unit time inside the system. Then

dSe

dt
= −

∫
Σ

~J s.n̂dΣ (72)

and
dSi

dt
=

∫
V

σsdV (73)

where n̂ is the unit normal pointing outwards the volume of the body.

The classical formulation of the second law due to Clausius states that, in isolated

systems, possible processes are those in which the entropy of the final equilibrium

state is higher than or equal to the entropy of the initial equilibrium state. In the

theory of irreversible processes one introduces an even stronger restriction by requiring

that the entropy of an isolated system must increase everywhere and at any time, i.e,
dS
dt
≥ 0. In non-isolated systems the second law takes the more general form:

dSi

dt
> 0 (for reversible processes) (74)

and
dSi

dt
= 0 (for reversible processes at equilibrium) (75)

It is worth mentioning here that the second law introduces an asymmetry in time for

irreversible processes, which is often known as an arrow of time.

Irreversibility and arrow of time

The principle of entropy increase sheds new light on the concept of time. The equa-

tions of Newtonian mechanics are deterministic and reversible with respect to reversal

of time. Time is considered as an external parameter, which describes the chronology

of succession of events. Reversible processes do not distinguish between the future

and the past. In contrast, the principle of increase of entropy makes possible the dis-

tinction between future and past as it implies an arrow of time. Irreversible processes

proceed spontaneously within a given direction in time. It establishes a fundamental

anisotropy in nature and provides a criterion allowing to decide whether a process is
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going forwards or backwards.

At microscopic level systems are reversible. It is believed that the large number of

particles in a system, makes the system evolve with irreversible dynamics due to our

inability to follow each individual particle. In other words, irreversibility is an illusion

raised up by our ignorance. In this way irreversibility should not be related to the

system itself but to the observer.

Irreversibility is also associated with loss of information according to information

theory. Accordingly, entropy is interpreted as a lack of information about the mi-

croscopic state of the system, and loss of information means higher entropy. When

entropy production is large, much information is lost per unit time, but in reversible

processes no information is lost. The problem of evolution of a system from reversible

to irreversible is still being studied.

Entropy production

The entropy production rate σs depends on the thermodynamic fluxes Jα and ther-

modynamic forces Xα as :

σs =
∑

JαXα (76)

Note that the thermodynamic forces are not forces in the mechanical sense, but they

are quantities generally related to the gradients of the intensive variables whereas

the fluxes Jα can be identified with the fluxes of energy, mass, momentum, etc. In

equation 3.11 the fluxes and forces may be scalars, vectors or tensors and the product

JαXα stands for the usual product between two scalars, the scalar product between

two vectors and the double scalar product between two tensors as the case may be.

At equilibrium or for reversible processes, the thermodynamic fluxes and forces vanish

identically so that entropy production is zero in such situations, as it should.

Experience shows that thermodynamic fluxes and forces are not independent but a

relationship exists between them. It has been observed for a large class of irreversible

processes, the fluxes are linear functions of the forces to a good approximation. This

also ensures that entropy production rate is a positive quantity. Hence we can put

Jα =
∑

Lαβ Xβ (77)

These flux-force relations are called phenomenological relations, constitutive or trans-

port equations. They express the relation between causes (the forces) and their effects

(the fluxes). They depend on the specific properties of the materials being studied.

The phenomenological coefficients Lαβ generally depend on the intensive variables

T, P and CK . The coefficient Lαα connects a flow Jα to its conjugate Xα while Lαβ

describes the coupling between two irreversible processes denoted by α and β. For
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example, in thermo-electricity Lαα is related to the electrical resistance and Lαβ to

the coupling between electric current and the heat flow.

Onsager reciprocity relations

According to equation 3.12 one should be allowed to couple flux to any force. However

material symmetry considerations limit the number of couplings between fluxes and

forces. This property is known as curies law. It reflects the property that macroscopic

causes cannot have more elements of symmetry than the effects they produce. For

instance, in isotropic systems and within the linear regime it is forbidden to couple

fluxes and forces of different tensorial character. As an example, chemical affinity (a

scalar) cannot give rise to a heat flux(a vector). similarly a temperature gradient (a

vector) cannot induce a mechanical stress (a tensor of order 2).

Another restriction on the sign of the phenomenological coefficients Lαβ arises as a

direct consequence of the second law. Substituting the linear flux-force relations 3.12

into entropy production rate equation leads to the quadratic form

σs =
∑
αβ

LαβXαXβ ≥ 0 (78)

According to standard results in algebra this implies that determinant |Lαβ + Lβα|
and all its principal minors are non-negative. Therefore we get

Lαα ≥ 0 (79)

and

LααLαβ ≥
1

4
(Lαβ + Lβα)2 (80)

Due to equation 3.14 all transport coefficients like heat conductivity, diffusion coeffi-

cient and the electrical resistance are positive. In other words, heat flows from higher

to lower temperature, electrical current flows from higher to lower electrical potential

and neutral solutions move from higher to lower concentrations.

Another important restriction on Lαβ was deduced by Onsager in 1931. According to

him “microscopic reversibility” meaning the invariance of the microscopic equations

of motion with respect to time reversal t −→ −t leads to symmetry property

Lαβ = Lβα (81)

The above result holds for fluctuations of extensive state variables that are even

functions of time. In the case of odd parity of one of the variables α or β for which

fluctuations are odd functions of time, the coefficients Lαβ are skew-symmetric instead

of symmetric. This was shown by Casimir in 1945. Hence for odd fluctuations

Lαβ = −Lβα (82)
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At first sight, Onsager-Casimir relations may appear modest. Their main merit lies in

symmetry properties in coupled processes. An advantage of these reciprocal relations

is their help in reducing the number of measurements. In practice the cross coefficients

are usually much smaller (of the order of 10−3 times) the direct coupling coefficients.

Onsager reciprocal relations have been widely applied in the treatment of coupled

irreversible place at the macroscopic scale far from equilibrium. It is important to

note that they are valid as long as the flux-force relation is linear.

3.4 Let us sum up

Irreversible thermodynamics deals with processes that are slightly away from equi-

librium. The basic transport equations like Fourier’s law, Fick’s law and Ohm’s law

relate fluxes to thermodynamic forces in a linear manner. Local equilibrium hypoth-

esis is used in irreversible thermodynamics to define variables outside equilibrium.

Entropy leads to dS
dt
≥ 0. Irreversibility may be thought of as arising from our lack of

knowledge of all microscopic processes. It is related to lack of information about our

system. Entropy production depends on fluxes and forces of thermodynamic nature.

The Phenomenological coefficients Lαβ relating fluxes and forces satisfy Curie’s law.

They also satisfy Onsager-Casimir reciprocal relations.

3.5 Key words

Arrow of time: Irreversible processes take place in only direction of increasing en-

tropy. This defines a direction of time called arrow of time.

3.6 Questions for self study

a) State and explain Fourier’s law, Fick’s law and Ohm’s law

b) Bring out the difference between a reversible process and an irreversible process

c) State and explain the local equilibrium hypothesis

d) Discuss the connection between irreversibility and arrow of time

e) Discuss the conditions satisfied by the phenomenological coefficients Lαβ

3.7 Further references

1. B.K. Agarwal and M.Eisner, Statistical Mechanics, New age international ltd.

New Delhi.

2. I. Prigogine, Introduction to thermodynamics of irreversible processes.
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3. S.R de Groot and P. Mazur, Non-equilibrium thermodynamics.

4. Zemonsky, Heat and Thermodynamics, McGraw Hill.

5. B.H. Lavenda, Thermodynamics of irreversible processes
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UNIT 4

4 Thermoelectric Phenomena

4.1 Objectives

4.2 Introduction

4.3 Thermoelectric effects

4.4 Let us sum up

4.5 Key words

4.6 Questions for self study

4.7 Further References

4.1 Objectives

After studying this unit you will be able to know about

• Seebeck effect

• Joule effect

• Heat conduction

• Peltier effect

• Thomson effect

4.2 Introduction

There are five different effect that take place when two dissimilar metals are connected

and the junctions are held at different temperatures. Such effects occur simultane-

ously. The effects are Seebeck effect, the Joule effect, the conduction of heat, the

Peltier effect and the Thomson effect. In this lesson you will learn about all the

mentioned effects.
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4.3 Thermoelectric effects

Seebeck effect

When two junctions are maintained at different temperatures, there is a thermal emf

between the junctions. The value of the emf (ε) depends on the materials and the

the two temperatures. If the circuit is broken at any point, the two ends may be

joined to wire of a third metal forming two new junctions. If these junctions are

maintained at the same temperature, the thermal emf in the circuit is not altered.

Then a galvanometer, a potentiometer or a motor may be inserted into the circuit.

When one junction is held at the constant temperature of melting ice, the variation of

the thermal emf with temperature of the other junction is found to obey the equation

ε = α1t+
α2

2
t2 +

α3

3
t3 (83)

where t is the temperature in celsius units and α′s are constants that depend on ma-

terials.

The following diagram shows the variation of ε as a function of temperature for dif-

ferent thermocouples

To obtain the emf when the cold junction is at a temperature other than 0◦C, it
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Figure 4.1: Thermoemf Versus temperature

is necessary to add a constant term. Therefore, it follows that the derivative dε
dT

at

one junction is independent of the temperature of the other junction.

Joule effect

This is the familiar heating effect due to electric current. If the thermal emf is not

balanced by an external emf, a current I exists. Its value may be adjusted by varying
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the external emf. Then if there is no external circuit, all the electrical energy developed

by the thermocouple is dissipated into internal energy. Then is the well known Joule

effect. Then

ε I = I2R (84)

where R is the resistance of the thermocouple. Sometimes it is possible to convert

the energy developed by the thermocouple can be converted into mechanical work.

Heat conduction

Let us say the junctions of a thermocouple are at temperatures T1 and T2 with T1 > T2.

Break the circuit at some point, the two ends of which are maintained at temperature

T by means of an insulating reservoir. Now there is no thermoelectric current and

therefore no Joule effect. However, the heat lost by the reservoir at T1 and gained by

that at T2 with no net gain or loss to the reservoir at T . The wires can be imagined

to be suitably insulated so that there is no appreciable lateral transfer of heat across

the surfaces of the wires. Then we obtain conducted heat for various values of the

temperature difference T1 − T2.

Peltier Effect

Let us consider a thermocouple with its junctions held at the same temperature.

If by means of an outside battery, a current is produced in the thermocouple, the

temperatures of the junctions will be found to change by an amount that is not

entirely due to the Joule effect. This additional temperature change is called Peltier

effect. Allowing for Joule effect, heat that must be either supplied or extracted to

restore the junction to its initial value of temperature is called the Peltier heat. The

Peltier effect takes place whether the current is provided by an outside source or

generated by the thermocouple itself.

The Peltier heat is measured by creating a known current in a junction initially at a

known temperature and measuring the rate at which the temperature of the junction

changes. The junction itself can be used as some kind of calorimeter. From the rate

of change of temperature and the heat capacity of the junction, the rate at which

heat is transferred is calculated. After subtracting the I2R loss and correcting for the

conducted heat, the Peltier heat is finally obtained. Detailed measurements have lead

to the following results:

(a) The rate at which Peltier heat is transferred is proportional to the first power of

the current. It is put equal to πI. The quantity π is called Peltier coefficient. It

is equal to the heat transferred when unit quantity of electricity travels through

the junction.
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(b) The Peltier heat is reversible. When the direction of the current is reversed

without changing the magnitude, the Peltier heat is the same, but in opposite

direction.

(c) The Peltier coefficient depends on the temperature and the materials of the

junction being independent of the temperature of the other junction.

Thomson Effect

The conduction of heat along the wires of a thermocouple carrying no current gives

rise to a uniform temperature distribution in each wire. If a current is present, the

temperature distribution in each wire is altered by an amount that is not entirely due

to Joule effect. This additional change in the temperature distribution is called the

Thomson effect. Allowing for Joule effect, heat must be either supplied or extracted

laterally at all places along the wires to restore initial temperature distribution is

called Thomson heat.

To measure the Thomson heat at a small region of any one wire, it is necessary to

produce a known temperature gradient in the region and to pass a known current

either up or down the temperature gradient. The rate at which Thomson heat is

transferred is equal to the rate at which electrical energy is dissipated minus the rate at

which heat is conducted. Since Joule effect can be calculated and the conducted heat

is known from previous experiments, Thomson heat can be deduced. The following

conclusions may be drawn about Thomson effect:

(a) Thomson heat is reversible

(b) The rate at which Thomson heat is transferred into a small region of wire car-

rying current I and supporting a temperature difference dT is equal to σ I dT ,

where σ is called Thomson coefficient.

(c) The Thomson coefficient depends on the material of the wire and on the mean

temperature of the small region under consideration.

Thermodynamic analysis of a thermocouple

Thermodynamics has been applied to understand the working of a thermocouple.

Lord Kelvin realised that the two irreversible phenomena of Joule effect and Heat

conduction could not be eliminated by merely choosing wires of proper dimensions.

If the wires are made very thin in order to cut down heat conduction, the electrical

resistance increases. On the other hand, if the wires are made thick to reduce electri-

cal resistance, heat conduction increases. He assumed that irreversible effects could

be ignored on the ground that they seemed to be independent of the reversible Peltier
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and Thomson effects. Kelvin set the sum of all entropy changes to zero by considering

a reversible transfer of unit amount of electricity through a thermocouple circuit. His

conclusions have been checked and verified.

However, it remains that Seebeck, Peltier and Thomson effects are inextricably linked

with irreversible effects. Hence it is necessary to study microscopic treatment of irre-

versible coupled flows developed by Onsager.

A small temperature difference ∆T established across a wire disturbs thermal equi-

librium and gives rise to heat current IQ. Since a cool reservoir at one end of the

wire is gaining entropy from the wire at a greater rate than that at which a warmer

reservoir at the other end is loosing it to the wire, we say that entropy produced in

the wire at a rate
dS

dT
= IQ

∆T

T 2
= IS

∆T

T
(85)

where IS is the entropy current equal to
IQ
T

.

A small potential difference ∆ε established across a wire disturbs the electric equi-

librium and gives rise to an electric current I. Since a reservoir at temperature T

which maintains the wire at a uniform temperature is gaining entropy and there is no

entropy input to the wire, we can say that entropy is being produced in the wire at a

rate
dS

dT
= I

∆ε

T
(86)

When both temperature difference ∆T and a potential difference ∆ε are present across

the wire, the rate of entropy production will be their sum

dS

dT
= IS

∆T

T
+ I

∆ε

T
(87)

If departures from equilibrium are too large, the entropy and electricity flow are

coupled in a simple manner, both depending linearly on both ∆T
T

and ∆ε
T

. The latter

are called ‘generalised forces’ while the former are called ‘currents’. Hence,

IS = L11
∆T

T
+ L12

∆ε

T
(88)

I = L21
∆T

T
+ L22

∆ε

T
(89)

In other words ‘generalised currents’ are linearly proportional to ‘forces’ or causes.

Clearly L11 and L22 have simple interpretation in terms of thermal conductivity and

electrical conductivity, respectively. The quantities L12 and L21 are called coupling

coefficients. They represent the effect of potential difference on an entropy current

and the effect of temperature difference on an electric current, respectively.

It was proved by L.Onsager (1931) that

L12 = L21 (90)
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which is now known as Onsager’s reciprocal relation.

If ∆T is set equal to zero in 4.6 and 4.7 then we get(
IS
I

)
∆T=0

=
L12

L22

(91)

The ratio on the left hand side is a measure of the entropy that is carried along with

electricity when the temperature is uniform. It is therefore called entropy transport

parameter and denoted by S∗. Thus

S∗ =

(
IS
I

)
∆T=0

=
L12

L22

(92)

S∗ plays an important role in the theory of a thermocouple.

In the absence of current equation 4.7 leads to

(∆ε)I=0 = −L21

L22

∆T (93)

Using Onsager reciprocal relation we get

(∆ε)I=0 = −L12

L22

∆T (94)

This equation can be written in terms of entropy transport parameter S∗ as

− (∆ε)I=0 = S∗ ∆T (95)

This equation can be used to calculate Seebeck emf generated in a thermocouple.

Consider a thermocouple shown in figure 4.2
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Figure 4.2: Thermocouple

The junction e of the wires A and B is maintained at temperature T while the two

junctions c and d, each with copper marked C are connected to the brass binding

posts of a potentiometer, forming two more junctions each of which is at room tem-

perature TR. The potentiometer is supposed to be balanced so that I = 0 and εa = εb
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is the Seebeck emf denoted by εAB.

Applying equation 4.13 to each of the wires marked A,B and C which are supposed

to have entropy transport parameters S∗A, S
∗
B and S∗C . Replacing ∆ε and ∆T by dε

and dT and integrating from one end of each wire to the other we get

εa − εc =

∫ T0

TR

S∗C dT

εc − εe =

∫ T

T0

S∗A dT

εe − εd =

∫ T0

T

S∗B dT (96)

εd − εb =

∫ TR

T0

S∗C dT

Taking the sum of the equations we get

εa − εb = ε A,B =

∫ T

T0

(S∗A − S∗B) dT (97)

Similar analysis applied to a thermo-junction of wires A and B leads to

πA,B = T (S∗A − S∗B) (98)

Here πA,B denotes the Peltier coefficient.

Analysis of a small wire having a small temperature difference between the ends leads

us to the following famous equations:

σA − σB = −T d

dt
(S∗A − S∗B) (99)

πA,B
T

=
dεA,B
dT

(100)

and so

σA − σB = −T d2εA,B
dT 2

(101)

From these equations it is possible to calculate the Peltier coefficient of any junction

and the difference of Thomson coefficients of two wires at any temperature, once the

temperature difference of the thermal emf is known.

4.4 Let us sum up

Five different effects take place when two dissimilar metals are connected and the junc-

tions are kept at different temperatures. The emf generated when the two junctions

are maintained at different temperatures is called Seebeck effect. The emf produced

can be expressed as

ε = α1t+
α2

2
t2 +

α3

3
t3
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where t is the junction temperature. The constants α1, α2 and α3 depend on the

materials involved. Joule effect is the heating effect due to resistance of the wires.

Heat conduction occurs whenever two ends are maintained at different temperatures.

Changes in temperatures of the junctions due to an external current passing through

the system is called Peltier effect. The rate at which Peltier heat is transferred is

proportional to the first power of the current. The proportionality coefficient is called

Peltier coefficient. Peltier heat is reversible. Thomson effect leads to a heating effect

whenever a current is passed through a junction. It is also reversible. If both tem-

perature difference and voltage difference are present in a rod like material there is a

production of entropy. The rate of entropy production depends linearly on ∆T
T

and
∆ε
T

. When departures from equilibrium is not large thermal and electrical currents

depend linearly on ∆T
T

and ∆ε
T

which are called generalised forces. The coefficients

of proportionality are found to be symmetric. That is known as Onsager reciprocal

relations. Thermodynamic analysis of Seebeck and Peltier effects can be performed

in terms of entropy transport parameters of the materials involved.

4.5 Key words

Entropy current: If IR is the heat current in a material i.e, the rate of transfer of

heat,
IQ
T

is said to be the entropy current due to heat

Generalised forces: The causes that lead to entropy production are called gener-

alised forces. For heat and electricity they are equal to ∆T
T

and ∆ε
T

, respectively.

Generalised currents: These are the effects of generalised forces. They are assumed

to be linearly proportional to generalised forces

Entropy transport parameter: Denoted by S∗, it is defined by
(
IS
I

)
at constant

temperature, where IS and I are thermal and electrical currents, respectively.

4.6 Questions for self study

a) Explain the occurrence of Seebeck effect, Joule effect, Peltier effect and Thomson

effect in a thermocouple

b) State and explain Onsager reciprocal relations

c) Explain the role of entropy transport parameter in thermocouples

4.7 Further references
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UNIT 5

5 Phase Space and Liouville Theorem

5.1 Objectives

5.2 Introduction

5.3 Micro and Macro states

5.4 Let us sum up

5.5 Key words

5.6 Questions for self study

5.7 Further References

5.1 Objectives

After studying this unit you will be able to

• define micro states and macro states of a system

• understand the postulate of equal apriori probability

• understand phase space

• state and prove Liouville theorem.

5.2 Introduction

A thermodynamic system will be having macro states described by a few dynamical

variables like pressure, volume, temperature etc. But it will have a large number of

micro states corresponding to the large number of possible distribution of its small

constituents. Macro states will be obtained as the resultants of large number of micro

states. We shall define both micro states and macro states precisely. A commonly

made postulate of equal apriori probability of micro states. You shall learn about
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it. Dynamic evolution of a system is represented with the help of phase space. For

microscopic systems we have a µ space, while for a macroscopic system we have Γ

space. The latter can be thought of as a direct product of µ spaces. A general state

of a system is represented by a point in phase. A large collection of closely spaced

phase points go to make up a phase fluid. Since our system has to obey Hamilton’s

dynamical equations, such a phase space fluid moves like an incompressible fluid.

That is the essence of Liouville theorem. You shall learn the statement and proof of

Liouville theorem.

5.3 Micro and Macro states

In classical mechanics the state of a particle is described in terms of its position and

momentum (or velocity) as a function of time. For a system of several particles the

state is specified by the set of position and momentum values of all its particles.

Suppose we are interested in a thermodynamic system such as gas in a container

or a solid body we have an extremely large number of particles (such as atoms or

molecules) to consider. For instance one cc of normal gas may contain up to 1019

atoms/molecules. But the thermodynamic properties of interest such as volume,

pressure, temperature are only few in number. Hence we have to find a way of

relating the thermodynamic variables to the properties of the constituent particles.

Micro states

Each set of coordinate and momentum variables of the constituent particles of a

system is said to specify a micro state. It is constantly changing in time due to

collisions between particles. The time between collisions is extremely small compared

to the time required for measuring the average or overall property of the system such

as pressure. If there are N particles in a system then each micro state is specified by

a set of 6N values of position and momenta.

Macro states

These are the states of a large system that need only a few variables for their speci-

fication. For instance, the pressure of a gas in a large container measured over some

time is an example of a macroscopic variables. Hence, the macro state of normal gas

is specified by three variables namely, pressure, volume and temperature. We shall be

concerned here only with equilibrium values of macro states. Such variables do not

change with time.
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Relation between micro and macro states

As a simple example for illustrating the connection between micro and macro states,

let us consider the simplified example of three particles a, b and c having micro states

with energies 0, 1, 2, 3, 4 units. We may specify the macro state by the total energy

of the system. The micro states are specified by the distribution of these particles in

the available energy levels.

Let us find out the number of micro states that correspond to a chosen energy level.

If the total energy of the system is zero, then there is only micro state wherein all the

three particles are in the zeroth energy state.

If the total energy of the system is one unit, there are three possible micro states such

that only one of the three particles is in the first energy level while the other two are

in the zeroth energy state.

. . . . 

. . . . 

E=3 ___ ___ ___ 

E=2 ___    ___    ___   

E=1   a   b   c 

E=0 bc ac ab 

 

 

E=3 ____ ____ ____ ____ ____ ____ 

E=2 ____ ____ ____ _a_ _b_ _c_ 

E=1 _ab_ _bc_ _ca_ ____ ____ ____ 

E=0 __c__ __a__ __b__ _bc_ _ca_ _ab_ 

 

 

E=3 __a__ __b__ __c__ ____ ____ ____ ____ ____ ____ 

E=2 ____ ____ ____ __a__ __b__ __c__ __a__ __b__ __c__ 

E=1 ____ ____ ____ __b__ __a__ __a__ __c__ __c__ __b__ 

E=0 _bc_ _ac_ _ab_ __c__ __c__ __b__ __b__ __a__ __a__ 

 

 

Figure 5.1: Representation of a macro state with energy one unit

The three micro states are shown in figure 5.1. Here we have assumed that a, b and c

are distinguishable.

For a macro state with energy equal to two units, the number of micro states are 6

as shown in figure 5.2.

. . . . 

. . . . 

E=3 ___ ___ ___ 

E=2 ___    ___    ___   

E=1   a   b   c 

E=0 bc ac ab 

 

 

E=3 ____ ____ ____ ____ ____ ____ 

E=2 ____ ____ ____ _a_ _b_ _c_ 

E=1 _ab_ _bc_ _ca_ ____ ____ ____ 

E=0 __c__ __a__ __b__ _bc_ _ca_ _ab_ 

 

 

E=3 __a__ __b__ __c__ ____ ____ ____ ____ ____ ____ 

E=2 ____ ____ ____ __a__ __b__ __c__ __a__ __b__ __c__ 

E=1 ____ ____ ____ __b__ __a__ __a__ __c__ __c__ __b__ 

E=0 _bc_ _ac_ _ab_ __c__ __c__ __b__ __b__ __a__ __a__ 

 

 

Figure 5.2: Representation of a macro state with energy two units

In case the particles are indistinguishable, the number of micro state will reduce to
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only two.

Similarly for a macro state with energy 3 units the number of micro states turns

out to be 10. They are illustrated in figure 5.3.

The results are summarised in the table below

. . . . 

. . . . 

E=3 ___ ___ ___ 

E=2 ___    ___    ___   

E=1   a   b   c 

E=0 bc ac ab 

 

 

E=3 ____ ____ ____ ____ ____ ____ 

E=2 ____ ____ ____ _a_ _b_ _c_ 

E=1 _ab_ _bc_ _ca_ ____ ____ ____ 

E=0 __c__ __a__ __b__ _bc_ _ca_ _ab_ 

 

 

E=3 __a__ __b__ __c__ ____ ____ ____ ____ ____ ____ ____  

E=2 ____ ____ ____ __a__ __b__ __c__ __a__ __b__ __c__ ____  

E=1 ____ ____ ____ __b__ __a__ __a__ __c__ __c__ __b__ __abc__  

E=0 _bc_ _ac_ _ab_ __c__ __c__ __b__ __b__ __a__ __a__ ____  

 

  ��                                                                                                      ��  

 

                                                                                                                                         ��, ��� 

 

 

 �                                                                                                     � 

 

 

��, ��� 

Phase space trajectory of a uniformly moving bead Phase space trajectory of an accelerated bead 

Figure 5.3: Representation of a macro state with energy three units

Macroscopic energy Number of micro states

E If the particles are distinguishable Particles are indistinguishable

0 1 1

1 3 1

2 6 2

3 10 3

Example: 5.1

If the energy of the macro system is 4 units in the above example, calculate the

number of micro states when the particles are distinguishable and indistinguishable.

As you can see, as the total energy of the system of three particles increases, the
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E=3 __ __ __ a a b b c c __ __ __ __ __ __ 
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E=1 __ __ __ b c a c a b bc ca ab __ __ __ 

E=0 bc ac ab c b c a b a __ __ __ c b a 

 

 

 

 

 

 

 

 

Number of states when a,b,c are distinguishable = 15 

Number of states when a,b,c are indistinguishable = 04 
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Figure 5.4: Number of micro states with energy equal to four units
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number of micro states rapidly increases. For a truly realistic system having extremely

large number of particles (or constituents) the micro states increase rapidly with a

macroscopic parameter such as energy. It will be seen that the number of micro states

reaches a peak value for a particular distribution of particles over the possible micro

states.

The postulate of equal apriori probability

You have seen that for a specified macro state there can be a large number of micro

states corresponding to different distribution of the constituents over allowed micro

states. It is assumed that all the allowed micro states are equally likely. This is stated

in the form of a postulate. It may be stated as : A microscopic system in equilibrium

is equally likely to be in any one of the micro states which are accessible to it and

which fulfill the conditions of the macroscopic system. Even though there is no direct

proof of this postulate, it is found to be reasonable and conformity with the laws of

mechanics.

The Phase Space

Let us consider the simple example of a bead moving along a string stretched along

the X−axis. The system has only one degree of freedom. Its state is represented by

the position and velocity (or equally well by momentum) at any instant of time. The

state of the bead can be represented by a point in a hypothetical two-dimensional

space called phase space. The coordinates of the points are x and px. As the bead

moves its state changes and hence its state point also moves in phase space. The state

point traces a curve in phase as shown in figure 5.5.

Similarly, a molecule of an ideal gas has three translational degrees of freedom. Its

phase space has has six dimensions whose Cartesian coordinates are x, y, z, px, py, pz.

Such a space is called µ space, the symbol µ standing for molecule.

For a system of N molecules (in a gas) the instantaneous state is represented by a

set of N points in the µ space, one for each molecule. As done by Ehrenfest, the

phase space of the collection of molecule has 6N dimensions with 3N coordinates and

3N momentum variables. It is called the Γ space of the system of molecules. It is

spanned by 3N coordinate values and 3N momentum values. As the molecules moves

the representative point in Γ space also moves. This is illustrated in figure 5.6

Since molecular motion is extremely random, the trajectory P in Γ space is expected

to be highly random in nature.
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. . . . 
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E=3 ___ ___ ___ 

E=2 ___    ___    ___   

E=1   a   b   c 

E=0 bc ac ab 

 

 

E=3 ____ ____ ____ ____ ____ ____ 

E=2 ____ ____ ____ _a_ _b_ _c_ 

E=1 _ab_ _bc_ _ca_ ____ ____ ____ 

E=0 __c__ __a__ __b__ _bc_ _ca_ _ab_ 

 

 

E=3 __a__ __b__ __c__ ____ ____ ____ ____ ____ ____ 

E=2 ____ ____ ____ __a__ __b__ __c__ __a__ __b__ __c__ 

E=1 ____ ____ ____ __b__ __a__ __a__ __c__ __c__ __b__ 

E=0 _bc_ _ac_ _ab_ __c__ __c__ __b__ __b__ __a__ __a__ 
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Phase space trajectory of a uniformly moving bead Phase space trajectory of an accelerated bead 

Figure 5.5: Phase space representations
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Figure 5.6: Γ space representation

Example 5.2

For a one dimensional harmonic oscillator the momentum and coordinate variables

satisfy

p2
x

2m
+

1

2
Kx2 = E = constant

Hence, the locus of phase space points will be an ellipse as shown in figure 5.7.

A three dimensional harmonic oscillator satisfies

p2
x

2m
+

p2
y

2m
+

p2
z

2m
+

1

2

(
K1x

2 +K2y
2 +K3z

2
)

= E = constant
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Number of states when a,b,c are indistinguishable=04 
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Figure 5.7: Phase space of a simple harmonic oscillator

Hence, the phase space will be the surface of an ellipsoidal figure in six dimensions.

Liouville Theorem

In 1838 Joseph Liouville showed that as a system moves in Γ space, no two trajectories

ever cross each other and that the density of phase space points remains constant in

time.

Consider a Γ space having f degrees of freedom. The number of phase space points

in the vicinity of a point q1, q2, ......qf ; p1, p2, ......pf in Γ space will be given by

dN = D (qi, pi, t) dq1.....dqf dp1.....dpf

whereD (qi, pi, t) represents the density of points around {qi} , {pi} and dq1.....dqf dp1.....dpf

denotes the hyper volume dΓ in phase space. Due to flow of phase points this number

will change with time due points entering and leaving the hyper volume under con-

sideration.

For simplicity let us consider a two dimensional phase space spanned by q1 and p1 as

shown in figure 5.8. Consider a rectangular region normal to q1 and p1 axes

The number of phase points entering the face q1 = constant in time dt is given by

D (q1, p1) (q̇1 dt) (dq2.....dqf ) (dp1.....dpf ) (102)

The number of phase points leaving the opposite face at q1 + dq1 in time dt is(
D +

∂D

∂q1

dq1

)(
q̇1 +

∂q̇1

∂q1

dq1

)
dt (dq2.....dqf ) (dp1.....dpf ) (103)

Subtracting 5.2 from 5.1 and neglecting second order differentials the change in the

number of points in the hyper volume dΓ in time dt is

−
(
D
∂q̇1

∂q1

+
∂D

∂q1

q̇1

)
dt dΓ (104)
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Figure 5.8

Similarly movement along p1 leads to a change in the number of phase points by

−
(
D
∂ṗ1

∂p1

+
∂D

∂p1

ṗ1

)
dt dΓ (105)

The total change in time dt of phase points in the small phase space volume dΓ will

be
∂D

∂t
dΓ dt (106)

It should be equal to the sum of 8.3 and 8.4 over all pairs of position and momenta:

−
3N∑
i=1

{
D

(
∂q̇i
∂qi

)
+
∂D

∂qi
q̇i +D

∂ṗi
∂pi

+
∂D

∂pi
ṗi

}
dΓdt (107)

Hence equating 5.5 and 5.6 we get

∂D

∂t
+

3N∑
i=1

{
D

(
∂q̇i
∂qi

)
+
∂D

∂qi
q̇i +D

∂ṗi
∂pi

+
∂D

∂pi
ṗi

}
= 0 (108)

Due to Hamilton’s equations of motion we have

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
.

Hence
∂q̇i
∂qi

=
∂2H

∂qi∂pi
= −∂ṗi

∂pi
= − ∂2H

∂pi∂qi

Hence equation 5.7 reduces to

∂D

∂t
+

3N∑
i=1

(
∂D

∂qi
q̇i +

∂D

∂pi
ṗi

)
= 0 (109)

The LHS of the above equation is nothing but the total time derivative of D (qi, pi, t).

Hence we get the equation
d

dt
D (qi, pi, t) = 0
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This is known as Liouville’s theorem.

It may be stated as: The density of phase space points does not change in time as the

system evolves in time. Hence, if any time the phase points are distributed uniformly

in Γ space, they will have uniform density for ever. There will not be any crowding

of phase points into any special region of Γ space.

We can use Liouville theorem to show the conservation of extension in phase space.

The number of phase space points in a small region can be obtained as

∆M = D (∆Γ)

where D is the density and ∆Γ is the small volume.

Then
d

dt
∆M =

dD

dt
∆Γ +

d∆Γ

dt
.

Since dD
dt

= 0 from Liouville theorem, we may conclude that ∆Γ remains constant as

it moves. The phase points on the boundary of ∆Γ form a skin that permanently

encloses the space points in ∆Γ. These points can be neither created nor destroyed.

Consequently, the number ∆M of phase points enclosed by ∆Γ remains constant.

Following J. Gibbs this result is called the principle of conservation of extension in

phase space.

5.4 Let us sum up

A thermodynamic system will generally have few macro states which are associated

with a large number of micro states. Macroscopic properties are believed to be deriv-

able by summing over micro states. The number of micro states rapidly increases as

the energy is increased. All micro states are assumed to occur with equal probability.

This is known as postulate of equal apriori probability. Specification of position and

momentum variables of micro states leads to the phase space. Microscopic properties

can be regarded as average values over suitable phase space volume. Closely space

points in phase space form what is known as phase fluid. Such a fluid behaves like

an incompressible fluid. That is the gist of Liouville theorem. It is also seen that the

volume in phase space is conserved.

5.5 Key words

Macro state: The state of a thermodynamic system

Micro states: The states of the small constituents of a macroscopic system

µ space: The phase space of a molecule or a microscopic system is called µ space

Γ space: The phase space of a large system is called a Γ space

Phase space fluid: A collection of very closely related set of phase space points

form a phase space fluid.
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5.6 Questions for self study

a). Define the micro states and macro states of a system

b). Define phase space of a molecule

c). Define Γ space

d). State and explain the postulate of equal apriori probability

e). State and prove Liouville theorem

f). Deduce the number of micro states for three particles with energy four units

when the allowed energy level are 0, 1, 2, 3, 4, 5, ... units.
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UNIT 6

6 Ensembles, Mean values and fluctuations

6.1 Objectives

6.2 Introduction

6.3 Types of ensembles

6.4 Let us sum up

6.5 Key words

6.6 Questions for self study

6.7 Further References

6.1 Objectives

After studying this unit you will be able to

• understand ensembles and their types

• learn about micro-canonical, canonical and grand canonical ensembles

• learn about mean values

• learn about fluctuations about mean values

6.2 Introduction

To deal with statistical systems Gibbs introduced three types of ensembles of systems.

They are

a) the micro-canonical ensemble

b) the canonical ensemble and
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c) the grand canonical ensemble

Their classification depends on the manner in which their systems interact. Each

corresponds to its own characteristic distribution. Physical systems can interact in

several ways. The ensemble in which systems exchange energy but not matter is

called a canonical ensemble. An ensemble in which both energy and matter are

exchanged between the systems is called a grand canonical ensemble. that in which

neither matter nor energy is exchanged is said to be a micro-canonical ensemble.

In statistical mechanics one calculates physical quantities in equilibrium conditions.

They correspond to mean values. However, one finds small fluctuations or deviations

from the mean values in a physical collection of systems. The fluctuations depend on

the number of constituents in a system. You will learn about all these in this unit.

6.3 Types of ensembles

Micro-canonical Ensemble

This ensemble consists of systems that are isolated from the rest of the world. Such a

system is also known as ‘closed isolated system’. It will have a fixed volume, fixed en-

ergy and fixed number of particles. The probability density P (q, p) of such a system

will be different from zero only on a constant energy hyper-surface. In reality such a

surface will have a width ∆E in energy.

In phase space a micro-canonical distribution would be something like a very thin

uniform cloud (see figure below)

 

   

p 

q 

Figure 6.1: Micro-canonical ensemble

For a simple harmonic oscillator, specifically, it will be an ellipse in p − q space. On
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the ellipse the energy remains constant.

According to fundamental postulate of equal apriori probability, the system is equally

likely to be found in one of its accessible states. In the case of micro-canonical en-

semble all the states between energy E and E+ ∆E are equally accessible. Hence the

probability of finding the system in a state X with a fixed energy will take the form

Px =

c, a constant for E < Ex < E + ∆E

0, otherwise
(110)

The constant c can be determined by the normalisation condition:
∑

x Px = 1, where

the summation is taken over all accessible states.

Canonical Ensemble

A micro-canonical ensemble is not very useful in applications since isolated systems

are very rare. However, it is useful in basic theory. A more realistic ensemble is one

where equilibrium is achieved by exchange of energy with the surroundings. Such an

ensemble is a canonical ensemble.

Suppose we want to study a thermodynamic system A. we imagine an assembly

of a very large number of identical systems in contact with a huge heat reservoir. A

heat reservoir is a system whose heat capacity so much greater than the subsystems in

contact with it. heat flow from or to the heat reservoir does not change its temperature

significantly. The assembly can be thought of as contained within a micro-canonical

ensemble. Each system of the assembly is in contact with other elements of the micro-

canonical ensemble, but isolated from the outside world.

What is the probability that a canonical system, in equilibrium, is in a particular

state with a specific energy Eα? Consider a canonical system A in a micro-canonical

ensemble A
′

such that A� A
′
. (fig 6.2)

 

   

 

 

 

 

 

 

 

p 

q 

A 

�
�
    

Figure 6.2

The walls ofA are such thatA andA
′
are free to exchange energy. The micro-canonical

ensemble is isolated with total energy, say, E0. A large number of microscopic states

correspond to the macroscopic state of the micro-canonical ensemble with energy E0.
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Let Ω0 be the total number of micro states of the micro-canonical ensemble with

energy E0. Using the postulate of equal apriori probability we conclude that all these

micro states are equally probable with probability 1
Ω0

. Different micro states of the

ensemble A
′

give rise to different micro states of the small subsystem A. Suppose

a certain micro state of A
′

gives rise to a micro state of A with energy Ea(with

Ea � E0). The energy of the remaining part of the complete system is E0 −Ea. Let

the number of states of the micro-canonical ensemble A
′

through which the states

of the small system A with energy Ea are attained be Ωα (E0 − Ea). Therefore the

probability of finding the system A in a state with energy Ea is

Pa =
Ωα (E0 − Ea)

Ω0

(111)

Using a = eln a we can write this as

Pa =
eln Ωα(E0−Ea)

Ω0

(112)

Expanding Ωα (E0 − Ea) in Taylor series,

ln Ωα (E0 − Ea) = ln Ωα (E0)− Ea
∂

∂E0

ln (Ωα (E0)) + higher order terms

we get,

Pα =
eln Ωα(E0) e−β Ea

Ω0

(113)

where

β =
∂

∂E0

ln (Ωα (E0))

Hence,

Pα = (constant) e−β Ea (114)

The constant can be found by normalisation
∑
Pα = 1.

This expression in equation 6.5 is called Gibbs canonical distribution. After normali-

sation, we can write for the probability of finding A in energy state Ea as Hence,

Pα =
e−β Ea∑
e−β Ea

(115)

The denominator is usually denoted by Z and called partition function. Thus

Z =
∑
a

e−β Ea (116)

The parameter β shall be identified with 1
KT

.
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Alternative method for canonical distribution

Let us consider an ensemble of a large number of systems, say, N . The numbers of

the ensemble are separated by ‘diathermic’ walls that permit the transfer of energy

from one system to another. Let us suppose that there are n1 systems in a state 1

with respect to energy E1, n2 systems in a state 2 with respect to energy E2 and so

on. In general there are ni systems in state i with energy Ei. Then it is clear that∑
ni = N and

∑
niEi = N 〈E〉 (117)

where 〈E〉 is the mean energy of the system.

Any set of numbers (n1, n2..........ni......) that satisfies equation 6.8 is a possible mode

of distribution and any such mode can be realised in a number of ways by shuffling

the members of the ensemble.

What is the probability of occurrence of such a distribution? Let us find the number

of ways in which a distribution of ni systems in energy state with energy Ei is possible.

Out of the total N systems n1 are to be accommodated in state 1. The total number

of ways for this is

N (N − 1) ...... (N − n1 + 1) (118)

or,
N !

(N − n1)!

Now we are left with N − n1 systems of which n2 are in state 2. This can be done in
(N−n1)!

n2!(N−n1−n2)!
different ways.

Proceeding this way we find the number of ways of choosing n1 systems in state 1, n2

systems in state 2 etc. is given by

W =
N !

n1! (N − n1)!
× (N − n1)!

n2! (N − n1 − n2)!
× ..... (119)

Note the presence of n1!, n2! in the denominator corresponding to the number of

ways of arranging n1, n2 etc. within themselves. Hence the factor n1!, n2! etc in the

denominator.

The probability of obtaining such a distribution is proportional to W . The most

probable distribution, which will be almost equal to the n=mean distribution, is

found by maximising W with respect to n1, n2....ni. Now

W =
N !

n1! n2! ...........
(120)

Therefore

lnW = lnN !−
∑
i

lnni! (121)
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Using Stirling’s formula for lnn for large n namely

lnn! ' n (lnn− 1)

we get

lnW = N (lnN − 1)−
∑
i

ni (lnni − 1) (122)

Therefore

lnW = N (lnN)−
∑
i

ni (lnni) (123)

Treating ni to be continuous variable lnW will be maximum if δ lnW = 0 for varia-

tions in all ni. This leads to

δ
∑
i

ni (lnni) = 0 (124)

Thus ∑
i

δni (lnni) + δni = 0 (125)

is the condition for maximum W .

The constraint conditions 6.8 imply∑
i

δni = 0 and
∑
i

Eiδni = 0 (126)

Using Lagrange multiplier method for finding maxima under constraints the condition

for maximum W is ∑
i

(lnni + α + βEi) δni = 0 (127)

where α and β are Lagrange multipliers.

Regarding δni are independent and arbitrary, equation 6.18 implies that the coefficient

of each δni to vanish. Hence

lnni + α + βEi = 0 (128)

This implies

ni = e−α−βEi (129)

as the general form for ni. Using the normalisation condition
∑
ni = N we get

ni =
Ne−βEi∑
i e
−βEi

(130)

for the number of systems in energy state Ei. This is the well known canonical

distribution.
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Grand Canonical Ensemble

We consider a situation in which a subsystem A in a system A
′

is such that A and

A
′

can exchange both energy and particles (matter). Such systems are called open

systems. A
′

is a member of a micro-canonical ensemble. Let E0 and N0 be the energy

and number of particles of the entire system. Then

E0 = Ea + E
′

and N0 = Na +N
′

(131)

Here Ea, E
′

are the energies and Na, N
′

are the number of particles in A,A
′

respec-

tively. We adopt the same technique as in canonical distribution.

The probability that a subsystem A is in state with energy Ea and has Na number of

particles is

Pa = cΩα (E0 − Ea, N0 −Na) (132)

where c is a constant and Ωα has the same as in th case of canonical distribution.

Let us expand ln Ωα in powers of Ea and Na as:

ln Ωα (E0 − Eα, N0 −Nα) = ln Ωα (E0, N0)−∂ ln Ωα

∂E0

Ea
∂ ln Ωα

∂N0

Na+higher order terms

(133)

Keeping only the first order terms in Ea and Na and putting

β =
∂ ln Ωα

∂E0

and − µ =
∂ ln Ωα

∂N0

we get

Ωα (E0 − Eα, N0 −Nα) = Ωα (E0, N0) e−βEa+µNa (134)

The normalisation condition gives

c =
1∑

a e
−βEa+µNa

(135)

This distribution is called grand canonical distribution.

Mean values and fluctuations

The mean value of a function fa is given by

〈f〉 =
∑
a

faPa (136)

For a canonical distribution

Pa =
e−β Ea∑
e−β Ea

.

Hence the mean value of f in a canonical ensemble is

〈f〉 =

∑
a fa e

−βEa∑
a e
−βEa

(137)
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Let us apply the formula to energy. Thus the mean energy will be

〈E〉 =

∑
aEa e

−βEa∑
a e
−βEa

(138)

putting Z =
∑
e−βEa we can write

〈E〉 = − 1

Z

∂Z

∂β
= − ∂

∂β
lnZ (139)

The mean value of the square of the energy is

〈
E2
〉

=

∑
aE

2
a e
−βEa∑

a e
−βEa

= − 1

Z

∂2

∂β2
Z (140)

We can define the fluctuation in energy ∆E by(
∆E2

)
=
〈
(E − 〈E〉)2〉 =

〈
E2
〉
− 〈E〉2 (141)

substituting the expressions in 139 and 140 we get

(
∆E2

)
=

1

Z

∂2Z

∂β2
− 1

Z2

(
∂Z

∂β

)2

(142)

Therefore (
∆E2

)
=

∂2

∂β2
(lnZ) = − ∂

∂β
〈E〉 (143)

Using the equation

β =
1

KT(
∆E2

)
= −∂ 〈E〉

∂β
= −∂ 〈E〉

∂T

∂T

∂β
= KT 2∂ 〈E〉

∂T
= KT 2CV (144)

Hence, we conclude that the fluctuation in energy is proportional to the specific heat.

In specific case of a perfect gas 〈E〉 = 3
2
NKT .

Hence (
∆E2

)
= KT 2 3

2
NK =

3

2
NK2T 2

Therefore the mean fractional fluctuation will be{
(∆E2)

〈E〉2

} 1
2

=
3
2
NK2T 2

9
4
N2K2T 2

=

√
2

3N
(145)

This turns out to be extremely small for practical values of N of the order of 1018.

Then the fractional fluctuation will be of the order of 10−9. This means the mean

energy is a very sharp function of {x1, x2, .....xi}. It may also be taken as the most

probable value for all practical purposes.
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6.4 Let us sum up

We have three different types of statistical ensembles. They are micro-canonical,

canonical and grand canonical ensembles. The micro-canonical ensemble corresponds

to an isolated system hence has theoretical importance only. In a canonical ensemble,

the elements can exchange energy but not particles. The probability of occurrence

of energy Ea is proportional to e−βEa . In a grand canonical ensemble both energy

and particles are allowed to be exchanged between the elements of the ensemble.

The probability of occurrence of a state with energy Ea and particle number Na is

proportional to e−βEa+µNa . Statistical ensembles show fluctuations in energy around

the mean value. The fractional fluctuation is typically proportional to 1√
N

where N

is the number of systems. It turns out to be negligible for practical systems having

N ' 1018.

6.5 Key words

partition function: It is defined by

Z =
∑
a

e−βEa

fluctuation in f : It is defined by (∆f)2, where (∆f 2) =
〈
(f − 〈f〉)2〉 = 〈f 2〉−〈f〉2.

It is a measure of deviations from the mean value

6.6 Questions for self study

a). Define canonical, micro-canonical and grand canonical ensembles

b). Derive the distribution for a canonical ensemble

c). Derive the grand canonical distribution function

d). Define mean values and fluctuations

e). Obtain the fractional fluctuation for an ideal gas
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UNIT 7

7 Gibbs distribution and Gibbs paradox

7.1 Objectives

7.2 Introduction

7.3 Gibbs distribution and Gibbs paradox

7.4 Let us sum up

7.5 Key words

7.6 Questions for self study

7.7 Further References

7.1 Objectives

After studying this unit you will be able to

• understand the reduction of Gibbs distribution to Maxwell-Boltzmann distribu-

tion

• understand the relationship between entropy and thermodynamic probability

• deduce entropy of an ideal gas

• state and explain Gibbs paradox

7.2 Introduction

Gibbs distribution was deduced from the theory of canonical ensembles can be reduced

to Maxwell-Boltzmann velocity distribution law for gases by making use of the number

of states in a given phase space. Entropy is a measure of disorder of a system. It

can be related to the number of accessible micro states for the system. It was first

deduced by Boltzmann. An ideal gas has entropy that can be worked out using its
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partition function. Using the expression for ideal gas entropy we get a paradoxical

situation when mixing of two containers of gases are considered. The resolution of

the paradox was proposed by Gibbs. We shall study all these topics in this unit.

7.3 Gibbs distribution and Gibbs paradox

Reduction of distribution to Maxwell-Boltzmann distribution

Maxwell-Boltzmann distribution function gives the probability of finding a particular

molecule within a certain velocity range. The system here is a single molecule in a

heat reservoir. The phase phase of a molecule is a six dimensional space.

A molecule occupies a phase space of volume h3. Hence the number of states of a

molecule contained in a phase space volume dΓ is

dΓ

h3
=
dxdydz dPxdPydPz

h3
(146)

where ~ is the Planck’s constant.

But according to Gibbs canonical distribution the probability of a system having a

state with energy Ea is
gae
−βEa∑

a e
−βEa

(147)

Therefore the probability of finding the system in phase space volume dΓ correspond-

ing to energy Ea is

dPa =
e−βEa dΓ

h3∑
a e
−βEa

(148)

To find the probability that the molecule has energy Ea, we have to integrate equation

7.3 with respect to all the elements of phase space corresponding to Ea.

Since the energy does not depend on the coordinates for an ideal gas we can straight

way integrate with respect to coordinates to get

dPa =
V

h3

e−βEa∑
a e
−βEa

dPxdPydPz (149)

The energy depends only on the magnitude of momentum. Hence going over to

spherical coordinates in P − space we get

dPa =
V

h3

(4πP 2) e−βEa∑
a e
−βEa

dP (150)

where E = P 2

2m
and P = mu. Substituting these into equation 7.5 we get

dPa =
4πV

h3

e−βm
u2

2∑
a e
−βmu2

2

(
m2u2

)
(m du) (151)
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Normalisation condition can be expressed as∫ ∞
0

dPa = 1

Therefore the condition becomes

4πV m3

h3
∑

a e
−βmu2

2

∫ ∞
0

e−βm
u2

2 u2du = 1 (152)

Using ∫ ∞
0

e−x
2

dx =

√
π

2

we can perform the integration to get for the LHS of equation 7.6

4πV m3

h3

m3(
βm
2

) 3
2

√
π

2

1∑
e−βm

u2

2

This gives the value of e−βm
u2

2 . Putting it back into equation 7.6 we get

dPa =
4√
π

(
βm

2

) 3
2

e−βm
u2

2 u2du (153)

This is nothing but Maxwell-Boltzmann distribution law for gas velocities. Here

β = 1
KT

.

We can use equation 7.8 to calculate the mean kinetic energy of the molecules. Hence〈
1

2
mu2

〉
=

∫ ∞
0

(
1

2
mu2

)(
4√
π

(
βm

2

) 3
2

e−βm
u2

2 u2

)
du

=
2m√
π

(
βm

2

) 3
2
∫ ∞

0

u4e−βm
u2

2 du

=
3

2β
=

3

2
KT (154)

Hence we get Maxwell-Boltzmann distribution law

dP (u) =
4√
π

( m

2KT

) 3
2
e−

m
2KT

u2du (155)

which is same as the standard M-B distribution law for gases.

Entropy and Thermodynamic probability

Entropy in thermodynamics is defined by

dS =
δQ

T
(156)

where

δQ = d 〈E〉+ 〈dW 〉 .
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The partition function Z is a function of β and energy E, which in turn is a function

of external parameters denoted by x

Therefore

d (lnZ) =
∂ (lnZ)

∂β
dβ +

∂ (lnZ)

∂x
dx

= −〈E〉 dβ + β 〈dW 〉 (157)

Therefore

d (lnZ) = −d (β 〈E〉) + βd 〈E〉+ β 〈dW 〉 (158)

Therefore

d (lnZ + β 〈E〉) = βd 〈E〉+ β 〈dW 〉 (159)

d (lnZ + β 〈E〉) = βδQ =
1

K
dS (160)

This leads us to

K d (lnZ + β 〈E〉) = dS (161)

Therefore entropy can be expressed as

S = K (lnZ + β 〈E〉)

but for an additive constant.

Entropy plays an important role in thermodynamics. Its statistical interpretation

makes us understand it in a better way.

We know that the most probable state is more probable than any other state. Impor-

tant contribution to the partition function comes from most probable energy, which

in turn is equal to the mean energy for all practical purposes. Hence, we can write

for Z

Z = e−β〈E〉Ω (〈E〉) (162)

where Ω (〈E〉) is the number of states with mean energy 〈E〉. Using this equation

7.16 we get

S = K {−β 〈E〉+ ln (〈E〉) + β 〈E〉}

S = K ln Ω (〈E〉) (163)

Hence the entropy is essentially determined by the logarithm of the number of micro

states corresponding to the energy 〈E〉.
Even though equation 7.18 has been derived for an ideal gas, it is valid in general for

all systems. It provides a clear interpretation of entropy. The more ordered a system

is, lower is the number of micro states through which the micro state is realised.

Hence more ordered system will have lower entropy.

For instance, if all the particles in a system are having a fixed position, there is only
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one micro state leading to zero entropy. It may be noted that increasing the number

of accessible micro states, the system becomes more disordered leading to increase in

entropy. Hence entropy is a measure of disorder or chaotic state of the system.

The equilibrium state of a system is the most probable state under given conditions

and it is attained through the largest number of microscopic states. The entropy of

the system attains its maximum value in this state. Also a system always tends to

move towards equilibrium state. i.e., in the direction of increasing entropy. This,

incidentally, can be taken as another statement of the second law of thermodynamics.

In practical terms, it is more difficult to calculate Ω (〈E〉) but easier to calculate the

partition function and the mean energy. Therefore, the definition for entropy is given

by 7.18 has lesser practical value.

Entropy of an ideal gas

As you know an ideal gas is one in which mutual interaction between molecules of the

gas is negligible. It is a good approximation for low density noble gases.

The total energy of an ideal gas having N molecules is

E =
∑ p2

i

2m
(164)

where n is the mass of each molecule.

It has been shown that almost all macroscopic properties of the system can be calcu-

lated from its partition function

Z =
∑
s

e−βEs .

The summation is over all discrete states denoted by S. If the states are not discrete,

as in the case classically, the sums must be replaced by integrals. How does one go

from summation to integration? The sum is over states has to be replaced by an

integration over phase space.

Consider the phase space divided into cells of volume hf each, where f is the number

of degrees of freedom. Let dV = dq1, ....., dqf , dp1, ......, dpf be a volume element in

the phase space at the point (q1, ....qf , p1, .....pf ) , the energy throughout it being the

same, the number of cells in this volume element is

dV = dq1, ....., dqf , dp1, ......, dpf
hf

.

The partition function is found by summing over all these cells and then integrating

over all elements of volume. Thus

Z =

∫
.......

∫
e−βE

dV = dq1, ....., dqf , dp1, ......, dpf
hf

(165)
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For an ideal gas with N molecules f = 3N and so

Z =
1

h3N

∫
.......

∫
e
−β
(
p21
2m

+
p22
2m

+.........

)
dq1, ....., dq3N , dp1, ......, dp3N (166)

Now ∫
........

∫
dq1, ....., dq3N =

∫
d3q1

∫
d3q2......

∫
d3qN = V N (167)

where V is the volume of the container.

Therefore

Z =
V N

h3N

∫
.....

∫
e
−β
(
p21
2m

+
p22
2m

+.........

)
dp1dp2.....dp3N

Z =
V N

h3N

∫
e
−β
(
p2

2m

)
d3p (168)

The integral in equation 7.23 is∫
e
−β
(
p2

2m

)
d3p =

∫ +∞

−∞
e
−β
(
p2x
2m

)
dpx

∫ +∞

−∞
e
−β
(
p2y
2m

)
dpy

∫ +∞

−∞
e
−β
(
p2z
2m

)
dpz

=

[∫ +∞

−∞
e
−β
(
p2

2m

)
dp

]3

=

(
2mπ

β

) 3
2

(169)

Hence

Z =
V N

h3N

(
2mπ

β

) 3
2

=

[(
2mKT

h2

) 3
2

V

]N
(170)

Using this Z various thermodynamic quantities can be deduced. For example,

〈P 〉 =
1

β

∂ lnZ

∂V
=

N

βV
=
NKT

V
(171)

〈E〉 = −∂ lnZ

∂β
=

3N

2β
=

3

2
NKT (172)

give the mean pressure and energy.

The entropy is given by the formula

S = K (lnZ + β 〈E〉)

= NK

[
lnV +

3

2
ln

(
2πm

h2

)
− 3

2
ln β +

3

2

]
= NK

[
lnV +

3

2
lnT + σ

]
(173)

where σ = 3
2

[
ln
(

2πmK
h2

)
+ 1
]
, a constant.

Note that classically h is arbitrary and thus the expression σ is indeterminate. Hence

absolute value of entropy is not defined, only its changes are physically meaningful.

We have derived the above expression on the basis of distinguishable particles of the

gas. It leads to paradoxical result when mixing of gases is considered.
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Gibbs paradox

Let us consider two boxes of ideal gas, one composed of N1 molecules in volume V1

and the other having N2 molecules in volume V2. Let them be at a temperature T .

See figure below
 

 

 

 

 + 
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Figure 7.1: Mixing of Ideal gases

The entropies of the two systems (boxes) before mixing are

S1 = N1K lnV1 +N1K
3

2
lnT +N1Kσ (174)

S2 = N2K lnV2 +N2K
3

2
lnT +N2Kσ (175)

When the two boxes are brought in contact forming one enclosure of volume V1 + V2

the entropy of the combined system is

S12 = (N1 +N2)K ln (V1 + V2) + (N1 +N2)K
3

2
lnT + (N1 +N2)Kσ (176)

The change in entropy after mixing is

∆S = S12 − S1 − S2

= N1K ln
V1 + V2

V1

+N2K ln
V1 + V2

V1

(177)

Clearly ∆S is positive and is known as entropy of mixing. This is understandable,

the process of mixing is irreversible etc.

A paradoxical situation arises when we consider the mixing of two identical volumes

of gas. In that case N1 = N2 and V1 = V2. Using equation 7.32 we get

∆S = 2N1K ln 2 (178)

This is totally non-physical. We can imagine the present state of gas as coming from

removal of imaginary partitions/compartments. Since there will be increase in entropy

with the removal of every partition, the entropy could be larger than any finite value!

This is known as Gibbs paradox since it was first pointed out by Gibbs.

The paradox can be removed only within the frame work of quantum mechanics. The

molecules of a gas are to be treated as indistinguishable. The treatment of classical

ideal gas discussed so far has over counted the states by assuming the molecules as
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distinguishable by a factor N ! which is the number of permutations of N identical

particles.

The correct partition function must be

Zc =
V N

N !h3N

(
2mπ

β

) 3N
2

(179)

This leads to

lnZc = N ln

[(
2mπ

h2β

) 3
2

V

]
− lnN !

Using Stirling’s approximation for lnN !:

lnN ! ' N (lnN −N)

We get

lnZc = N

[
ln
V

N
+

3

2
ln

2mπ

h2β
+ 1

]
(180)

With this expression for Zc the entropy becomes

Sc = NK

[
ln
V

N
+

3

2
ln

2mπ

h2β
+

5

2

]
(181)

This is known as Sackur-Tetrode formula for entropy. This entropy behaves like an

extensive quantity. With this Sc the entropies of the gases considered earlier becomes

Sc1 = N1K

[
ln
V1

N1

+
3

2
ln

2mπ

h2β
+

5

2

]
Sc2 = N2K

[
ln
V2

N2

+
3

2
ln

2mπ

h2β
+

5

2

]
(182)

Sc12 = (N1 +N2)K

[
ln

(V1 + V2)

(N1 +N2)
+

3

2
ln

2mπ

h2β
+

5

2

]
It is clear that Sc 12 = Sc 1 +Sc 2 when V1 = V2 and N1 = N2 thus leading to no change

in entropy on the mixing of identical boxes of gases. The paradox has been resolved.

7.4 Let us sum up

Gibbs canonical distribution leads to Maxwell-Boltzmann distribution law for veloci-

ties of an ideal gas when the phase space volume of gas molecules is considered. En-

tropy is related to the degree of disorder present in a system. It equals K ln Ω (〈E〉) ,
the famous formula of Boltzmann. The correct entropy of a classical ideal gas is given

by Sackur-Tetrode equation. If classical particles/molecules of a gas are treated as

distinguishable, we are lead to a paradoxical result called Gibbs paradox. The para-

dox is resolved by assuming the particles as indistinguishable. The resolution was

proposed by Gibbs even before the arrival of quantum mechanics.
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7.5 Key words

partition function: Denoted by Z, it is equal to
∑

s e
−βEs where the sum is over

all the states of the system

Entropy: Thermodynamically differential entropy is defined by dS = δQ
T

where δQ

is the heat transferred at temperature T . Statistically it is defined by S =

K ln Ω (E), where Ω is the number of micro states corresponding to energy E.

7.6 Questions for self study

a) Deduce Maxwell-Boltzmann velocity distribution using Gibbs canonical distri-

bution

b) Explain the relationship between entropy and thermodynamic probability

c) Derive the partition function for an ideal gas and hence its entropy

d) State and explain Gibbs paradox. How it is restored?

7.7 Further references
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UNIT 8

8 Equipartition theorem and Chemical Equilibrium

8.1 Objectives

8.2 Introduction

8.3 The equipartition theorem

8.4 Let us sum up

8.5 Key words

8.6 Questions for self study

8.7 Further References

8.1 Objectives

After studying this unit you will be able to

• state and derive equipartition theorem

• apply equipartition to solids

• understand some properties of chemical equilibrium

8.2 Introduction

In statistical mechanics the mean energy due to every particular type of motion or

degree of freedom is important. In a canonical distribution it is found that the mean

energy takes the same values of each quadratic degree of freedom. Such a result is

know as equipartition theorem. We shall state and derive it. In the classical model of

a solid one has atoms or molecules of a solid executing vibrational motion about their

stable rest position. That leads to certain energy and form the equipartition theorem

to a specific value of specific heat. We shall consider that problem here. Finally

under equilibrium conditions we get equal chemical potentials. We shall study all

these topics in this unit.
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8.3 The equipartition theorem

The mean energy due to a particular motion or degree of freedom is very important

in statistical treatments of a macroscopic system. The treatment of mean energy

became specially simple when we can express the energy function as a sum of quadratic

functions of coordinates or generalised momenta.

Let the energy of a system due to motion in one particular degree of freedom depend

quadratically on the momentum, say pi. That is Ei = αp2
i . The total energy can be

written as

E = αp2
i + E

′
(183)

where E
′
is a function of coordinates and momenta which do not depend on pi. When

the system is in thermal equilibrium, the mean value of Ei at a particular temperature

is given by the canonical distribution. It can be written as

〈Ei〉 =

∫
....
∫
e−βE (αp2

i ) dq1.......dpf∫
....
∫
e−βE dq1.......dpf

(184)

Here the integration is performed over all coordinates and momenta from q1 to pf .

let us split E into two points, one depending on pi and the other independent of it.

Hence equation 184 can be written as

〈Ei〉 =

∫
e−βαp

2
i (αp2

i ) dpi
∫
.....
∫
e−βE

′
dq1.......dpf∫

e−βαp
2
i dpi

∫
.....
∫
e−βE

′
dq1.......dpf

(185)

The last factors in the numerator and denominator cancel each other and thus we get

〈Ei〉 =

∫ +∞
−∞ e−βαp

2
i (αp2

i ) dpi∫ +∞
−∞ e−βαp

2
i dpi

(186)

This can be evaluated easily since

〈Ei〉 = − ∂

∂β
ln

∫ +∞

−∞
e−βαp

2
i dpi (187)

Using the standard integral ∫ +∞

−∞
e−x

2

dx =
√
π

we can evaluate ∫ +∞

−∞
e−βαp

2
i dpi

by using the simple substitution x2 = βαp2
i . Then dx =

√
βα dpi. Hence∫ +∞

−∞
e−βαp

2
i dpi =

∫ +∞

−∞
e−x

2 dx√
βα

=

√
π

βα
(188)

Therefore

〈Ei〉 = − ∂

∂β
ln

√
π

βα
=

1

2β
(189)
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As β = 1
Kt

we conclude that 〈Ei〉 = 1
2
KT . This is known as equipartition theorem.

Note that it is independent of α. It gives the same value whether we consider a

coordinate or momentum as long as energy dependence is a quadratic function of

either coordinate or momentum. The total energy is equally partitioned or divided

into various quadratic degrees of freedom. Hence the name-equipartition theorem.

Tolman has generalised this theorem. It is stated as:〈
qi
∂E

∂qi

〉
=

〈
pi
∂E

∂pi

〉
= KT (190)

We can check easily that this general form reduces to the equipartition theorem when-

ever the energy depends quadratically on coordinates or momenta.

For example, in the case of ideal gas the total energy depends on the momenta only

as

E =
p2
x

2m
+

p2
y

2m
+

p2
z

2m
(191)

Then the mean energy per molecule of the gas will be

〈E〉 = 3× 1

2
KT =

3

2
KT

per molecule.

For a three dimensional harmonic oscillator

E =
3∑
i=1

p2
i

2m
+

1

2

3∑
i=1

Kiq
2
i (192)

Then mean energy per molecule comes from both pi and qi. From equipartition

theorem

〈E〉 = 3×
(

1

2
KT

)
+ 3×

(
1

2
KT

)
= 3KT

per molecule.

Specific heat of Solids

In a simple three dimensional model of solid we consider molecules located at fixed

locations (sites) forming bonds with the neighbouring molecules. But the molecules

are assumed to be capable of vibrations about their mean positions. The vibrations

will have higher amplitudes at higher temperatures.

Let us consider a gram atom of a solid containing N0 (Avogadro number) non-

interacting atoms harmonically bound to centres of forces. The Hamiltonian of each

atom can be

H =
∑
i

p2
i

2m
+

1

2

∑
i

Kiq
2
i (193)

79



Course MP 2.3 KSOU

Note that Ki are force constants that can be different along three orthogonal direc-

tions. The total energy will be the sum of the energies of non-interacting N0 atoms.

From equipartition theorem, we can deduce the mean energy of the solid as

〈E〉 = N0

(
3×

(
1

2
KT

))
+N0

(
3×

(
1

2
KT

))
(194)

That is 〈E〉 = 3N0KT = 3RT where R is the gas constant. Hence the specific heat

of the solid due to vibrations of its atoms is

CV =
∂ 〈E〉
∂T

= 3R (195)

This is known as Dulong-Petit law. Note that the specific heat is independent of

temperature. This law is not empirically satisfied by solids. It is valid at very high

temperatures only. The discrepancy can be explained in a quantum theory of solids

where it is shown that not all vibrations are excited at low temperatures. We are

then lead to Einstein model for the specific heat of a solid.

Chemical potentials in the Equilibrium state
 

� 
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Figure 8.1

Consider two systems A and A
′

with particles N1 and N2 and chemical potentials

µ1 and µ2. Suppose they are in equilibrium. Then their temperatures and pressures

will be equal. When they are in contact being separated by a permeable partition

(see figure 8.1) we wish to consider their free energies. The free energy is given by

F = U − TS

Therefore

dF = dU − TdS − SdT (196)

But

dU = TdS − PdV +
∑

µiδNi (197)

Therefore

dF = −SdT − PdV +
∑

µiδNi (198)

When T and V are maintained constant

dF =
∑

µiδNi (199)
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In the system under consideration

dF = µ1dN1 + µ2dN2 (200)

Where dN1 and dN2 are the changes in the number of particles on the two sides of

the partition. If the composite system is closed then N1 +N2 is constant. Therefore

d (N1 +N2) = dN1 + dN2 = 0 (201)

Hence

dF = (µ1 + µ2) dN1 (202)

Under equilibrium conditions
∂F

∂N1

= 0 =
∂F

∂N2

(203)

Applying this rule to equation 202 we get

µ1 − µ2 = 0 or µ1 = µ2 (204)

Therefore, we conclude that for a system to be in equilibrium state, temperature,

pressure and chemical potential must be constant throughout the system.

8.4 Let us sum up

The canonical distribution function leads to the result that energy is equally parti-

tioned between various quadratic degrees of freedom in thermal equilibrium. Each

degree of freedom will have energy of 1
2
KT per molecule. Assuming a solid to be

made of classical vibrations we come to conclusion that the specific heat of a solid is

equal to 3R per mole at all temperatures.

From considerations of equilibrium we conclude that chemical potential remains con-

stant throughout the system when different parts of it are in equilibrium.

8.5 Key words

Equipartition of energy: The process of dividing the total energy equally for each

degree of freedom is known as equipartition of energy

Molar specific heat: The specific heat per mole of a substance is called molar spe-

cific heat

8.6 Questions for self study

a) State and prove the equipartition theorem of energy

b) Derive the specific heat for a gas made of rotating diatomic molecules

c) Show that chemical potential is constant throughout a system in equilibrium.
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UNIT 9

9 Quantum Statistical Mechanics

9.1 Objectives

9.2 Introduction

9.3 Micro-canonical ensemble

9.4 Let us sum up

9.5 Key words

9.6 Questions for self study

9.7 Further References

9.1 Objectives

After studying this unit you will be able to

• understand quantum micro-canonical ensemble

• understand the basic postulates of quantum statistics

• know the classical limit

• know the symmetry of the wave functions

9.2 Introduction

Quantum mechanics provides the correct description of systems both small and large.

Classical statistical mechanics is useful approximation to quantum statistical mechan-

ics in the limit of low densities and high temperatures. Heisenberg uncertainty relation

is another reason for using quantum considerations. According to that principle, it is

not possible to specify both position and momentum simultaneously which are needed

for a classical description. We use methods based on probabilities and averages in
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quantum mechanics. The classical notion of phase space cannot be used in quantum

statistical mechanics. You will learn how quantum micro-canonical ensemble is de-

fined and used. You will learn the basic postulates of quantum statistical mechanics.

It reduces to the classical description in the limit of low densities and high tempera-

tures. Due to the indistinguishability of quantum particles, it becomes necessary to

use suitably symmetrised wave functions in quantum statistics. All these matters are

discussed in this unit.

9.3 Micro-canonical ensemble

For a system of N particles in volume V , the quantum states are determined by

Schrödinger eigenvalue equation

HNΨi ({qi}) = EiΨi ({qi}) (205)

Where HN is the Hamiltonian operator of the N − particle system Ψi ({qi}) is the

wave function for the system in the quantum state i having energy Ei. Therefore the

set of microscopic states in quantum statistical mechanics is a discrete denumerable

set denoted by the quantum number i. The system has to be in one or the another

of these states.

We construct mentally an ensemble to represent what we know about the physical

system of interest. Each element of the ensemble can be in one of the discrete quantum

states allowed by the system. The number of different quantum states which have a

given energy is called the degeneracy g of the energy level. Energy levels can have

degeneracies while quantum states do not.

A fundamental assumption of equilibrium statistical mechanics is that the probability

Pi of occupation of the i th level is a function of Ei only. Thus

Pi = Pi (Ei) (206)

In addition, all quantum states with the same energy have the same probability. Thus

the probabilities of all degenerate quantum states in one level are equal. Therefore

we say that in a state of microscopic equilibrium, all stationary quantum states of

equal energy have equal apriori probability. This replaces the familiar equal apriori

probability hypothesis of classical phase space.

For an isolated system the energy is constant. Then the probability Pi should be such

that it is zero for all states unless Ei = Esystem. If Ω is the degeneracy of the energy

level Esystem then only these states are present in the ensemble. Each such state has

equal probability,

Pi = constant = a (say) (207)
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Then
g∑
i=1

Pi =

g∑
i=1

a = ga = 1 (208)

This defines the micro-canonical ensemble with probability distribution

Pi =

 1
Ω

if Ei = Esystem

0 if Ei 6= Esystem

(209)

Note that as the energy of the microscopic system increases, the degeneracies of the

different energy levels increase rapidly. Hence if the system energy is large, more

quantum states are available to the system and the probability of any one state

being occupied decreases. Esystem may lie between E and E + ∆E where ∆E is

large compared with h
δt

, δt being the time available for observation and h is Planck’s

constant.

Basic postulates of quantum statistical mechanics

Let Ψn be the state function of the nth element in an arbitrary ensemble A. The

expectation value of energy in the quantum mechanical average of the Hamiltonian

operator. It is

〈H〉n =

∫
Ψ∗nHΨn dτ = Hnn (210)

with ∫
Ψ∗nΨm dτ = 〈Ψn|Ψm〉 = δmn

The ensemble average is defined by

¯〈H〉A =
1

M

M∑
n=1

〈H〉n =
1

M

M∑
n=1

Hnn (211)

In the case of an ideal micro-canonical ensemble I representing an isolated system in

equilibrium, the elements are all in one of the energy eigenstates Ψi such that

HNΨi = EiΨi and Ψn = Ψin (212)

Therefore in this ensemble

¯〈H〉I =
1

M

M∑
n=1

〈Ψin|H|Ψin〉 =
1

M

M∑
n=1

Ein =
∑

PiEi (213)

where Pi is the probability that an element in ensemble I is in the state Ψi. This is also

the definition of quantum mechanical average energy. This situation has no classical

analogue because in spite of the maximal knowledge given by the wave function we
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must use quantum mechanical averaging procedure. For an arbitrary ensemble we

expand Ψn as

Ψn =
∑
j

anjΨj with 〈Ψj|Ψk〉 = δjk (214)

This is satisfied by systems of interest that interact weakly with surroundings.

The system would not be in a stationary state as this is a mixed case. Its state is a

superposition of pure states. We do not possess such complete knowledge, as in the

pure case, about the quantum mechanical description of the system. There may exist

many wave functions compatible with the incomplete information about the system.

The effect of these must be suitably averaged. Hence

¯〈H〉A =
1

M

M∑
n=1

〈∑
j

anjΨj |H|
∑

ankΨk

〉

=
1

M

M∑
n=1

∑
j

a∗njEj (215)

If we choose

Pi =
1

M

M∑
n=1

a∗niani = a∗niani (216)

we get

〈H〉I = 〈H〉A.

In terms of anj we can state the postulates of statistical mechanics as:

(a) postulate of equal apriori probabilities:

ie.

Pi = a∗niani =

 1
Ω

if E < Ei < E + ∆E

0 otherwise
(217)

(b) postulate of random phases:

a∗njank = 0 for j 6= k (218)

Here the bar denotes ensemble average. The constant 1
Ω

follows from the normalisation

:

a∗niani = 1.

For the mixed case we need both the quantum mechanical and ensemble average. For

the micro-canonical ensemble only 217 is required.

We need equation 218 for systems interacting with surroundings (like in canonical

ensemble). It ensures that the relevant probability amplitudes do not interfere. We

have an incoherent superposition of states. In the absence of interference we can
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assume that the elements are in definite energy eigenstates.

In the classical limit, under Bohr’s correspondence principle, it is found that these

allowed eigenstates divide the phase space into cells of equal size. We can replace

the eigenstates by equal regions in phase space. The equal regions in phase space

are assigned equal apriori probabilities. In the classical case there is no analogue

to the postulate of random phases because unknown phases arise solely in quantum

mechanics.

For the purpose of calculations we can formulate the statistical hypothesis in terms

of the following postulates:

(a) Postulate of ensemble average: The average behaviour of a macroscopic sys-

tem in equilibrium is given by the average taken over a suitable ensemble con-

sisting of an infinite number of randomised metal copies of the system of interest.

(b) Postulate of equal apriori probabilities: In a state of microscopic equilib-

rium, all stationary states of quantum states of equal energy have equal apriori

probability.

(c) Postulate of equilibrium state: Equilibrium state is the one which occupies

maximum volume in Γ space (classical or quantum mechanical cellular space).

The following are some implications of the postulates. The method of calculation is

statistical in nature. The predictions are to be regarded as true on the average. The

equilibrium state is the state of maximum probability.

The classical limit

In classical mechanics we can specify simultaneously both qi and Pi for a particle. In

quantum mechanics the uncertainty principle forbids this. A classical description is a

reasonable approximation only when the effects of h are negligible. That is

δq.δP � h (219)

Consider molecular motion in a gas. If Pav denotes the mean momentum and γav its

mean separation from other identical molecules, a classical description is valid when

γav.Pav � h (220)

Using deBroglie wavelength λ = h
P

this means

γav � λav (221)

is satisfied by the classical limit.

As λav is a measure of the spread of a molecule in space, it means that when 221 is
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satisfied molecular wave-functions do not overlap and they are distinguished by their

position.

Let us imagine that each particle occupies a tiny cube of side γav and these cubes fill

a volume V . Then

γ3
avN = V or γav =

(
V

N

) 1
3

(222)

For a temperature T the average energy is given by

P 2
av

2m
= ε̄ =

3

2
KT or Pav = (3mKT )

1
2 (223)

Hence

λav '
h

(3mKT )
1
2

(224)

Condition 221 then implies(
V

N

) 1
3

� h

(3mKT )
1
2

(classical limit) (225)

From this we can clearly see that classical description is valid for small N (dilute

gas) and T is large (high temperature). This is clearly satisfied by ordinary gases at

room temperature. For electrons in a metal at normal temperatures it is not fulfilled.

Therefore quantum statistics has to be applied to electrons in a metal.

Symmetry of wave functions

Let us consider a two-particle system described by a wave function Ψ (1, 2). In the

quantum region it is not possible to distinguish the two identical particles. If we

exchange the two particles, there should be no change in observable effects. That

means Ψ (2, 1) should be proportional to Ψ (1, 2). By repeating the interchange once

more we conclude that

Ψ (1, 2) = ±Ψ (2, 1) .

Hence only two possibilities exist in nature

Ψ (1, 2) = +Ψ (2, 1) symmetric

Ψ (1, 2) = −Ψ (2, 1) antisymmetric (226)

It is found in nature that the symmetry or antisymmetry property under interchange

of two particles is an intrinsic property of the particles themselves. It is found that

(a) Systems consisting of identical particles of integral spin: 0, ~, 2~, ....... are de-

scribed by symmetric wave functions, ΨS.

(b) Systems consisting of identical particles of half odd-integral spin: 0, ~
2
, 3~

2
, .......

are described by antisymmetric wave functions, ΨA.
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Particles of type (a) are called Bosons while those of type (b) are called Fermions.

Thus there is a deep lying connection between spin of particles and their quantum

statistics.

For quantum statistics, the simple product type wave functions have to be suitably

symmetrised. For example if Ψa and Ψb are two single particle states for two particles

1 and 2 Bosons would require the wave function

ΨS (1, 2) =
1√
2

(Ψa (1) Ψb (2) + Ψb (1) Ψa (2)) (227)

while Fermions would require

ΨA (1, 2) =
1√
2

(Ψa (1) Ψb (2)−Ψb (1) Ψa (2)) (228)

for their description.

For a collection of more than two bosons or Fermions we have to form totally sym-

metric or antisymmetric wave functions from the single particle wave functions.

The statement that no two Fermions can be in the same quantum state is called

Pauli’s exclusion principle. Hence the occupation number for a Fermionic state is 0

or 1. Similarly the occupation number for a Boson state can be 0, 1, 2, ........

9.4 Let us sum up

The classical notion of phase space cannot be used in quantum statistical mechanics.

Quantum description reduces to the classical one in the limit of low densities and

high temperatures. The probability of occupation of ith energy level is a function of

Ei only. In macroscopic equilibrium all stationary states of equal energy have equal

apriori probability and random phases in quantum statistics. The equilibrium state

is that which occupies maximum volume in Γ space. Classical limit is obtained when

the mean separation between molecules is greater than their de Broglie wavelength.

The wave functions of identical quantum particles obey specific symmetry properties.

Wave functions of bosons have to be symmetric under exchange of particles while

those of Fermions have to be antisymmetric under exchange.

9.5 Key words

Ensemble: A large collection of macroscopically identical but microscopically differ-

ent systems constitute an ensemble

Degeneracy of a level: The number of independent quantum states that corre-

spond to the same energy is said to be the degeneracy of that level

Bosons: Particles that have spin integer multiple of ~ including zero are said to be

Bosons
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Fermions: Particles that have half odd integer multiple of ~ as their spin angular

momentum are said to be Fermions

9.6 Questions for self study

a) State and explain the basic postulates of quantum statistical mechanics

b) Under what conditions does one get the classical limit of quantum description?

c) Show that electrons with density of 1022 cm−3 and mean energy of 1 eV consti-

tute a quantum mechanical gas

d) Obtain the symmetric and antisymmetric wave functions for a collection of three

independent quantum particles
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UNIT 10

10 Density Matrix, Liouville theorem and Statis-

tical equilibrium

10.1 Objectives

10.2 Introduction

10.3 The Density Matrix

10.4 Let us sum up

10.5 Key words

10.6 Questions for self study

10.7 Further References

10.1 Objectives

After studying this unit you will be able to

• know the definition and properties of density matrix

• state and prove Liouville theorem

• understand the condition for statistical equilibrium

10.2 Introduction

Quantum mechanical systems are comprised of indistinguishable components. The

micro particles of the same species are indistinguishable from one another. For ex-

ample, all electrons are identical. Hence if two electrons are exchanged the physical

situation do not change. Hence the rules of counting states must be different from

that used in classical Maxwell-Boltzmann model. It is therefore necessary to treat the

theory in terms of quantum mechanical wave functions and operators. The treatment
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is different from the classical one. However in the limit of high temperatures and low

densities the quantum treatment reduces to the classical one. Quantum mechanical

mixed states are best described in terms of the density matrix of states. You shall

learn about it. Liouville theorem can be formulated in terms of density matrix. The

condition to be satisfied by statistical equilibrium shall also be discussed.

10.3 The Density Matrix

In classical statistical mechanical we specify the state of a system by a point in phase

space and an ensemble by a cloud in phase space. The mean value of any function

F (qi, Pi) is given by

〈F 〉 =

∫
.....

∫
F (qi, Pi) ρ (qi, Pi) dqi.......dPf (229)

where ρ is the density distribution of phase points and f is the number of degrees of

freedom. It has been shown by Von Neumann that a quantity called density matrix

in quantum statistics takes the place of distribution function in classical statistics.

By knowing this matrix it is possible to calculate the mean values of any quantity

describing a property of the system as well as the probabilities of various values of

such quantities.

In quantum statistics the concept of uncertainty enters in two different ways

(1) If one try to assess the value of a dynamical variable corresponding to an oper-

ator Ô by performing measurements, then each system will respond by jumping

into one of the eigenstates of Ô. It is impossible to predict in advance which

eigenstate it is going to be. Consequently quantum measurements can only pro-

vide us with probabilities of getting different eigenvalues of the operator Ô. This

type of uncertainty forms an integral part of quantum mechanics and cannot be

overcome by any refinement in the techniques of measurement.

The variation of a wave function in time t is determined by Schrödinger equation

i~
∂

∂t
Ψ (q, t) = ĤΨ (q, t) (230)

Let {φn (q)} be a complete set of orthonormal functions of the system. Here

the suffix n denotes the set of all quantum numbers which distinguish various

stationary states. Then Ψ can be expressed as a linear combination of φn (q).

Thus

Ψ (q, t) =
∑
n

Cn (t)φn (q) (231)

where Cn (t) are the probability amplitudes for the system. Hence |Cn (t)|2 is

the probability that the system at time t is in the state φn (q).
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It is clear from conservation of probability that∑
n

C∗n (t)Cn (t) =
∑
n

|Cn (t)|2 = 1 (232)

The average value (expectation value) of an observable F for the system is given

by

〈F 〉 =

∫
Ψ∗ (q, t) F̂ Ψ (q, t) dq (233)

where F̂ is the operator corresponding to the observable. Using equation 231

we get

〈F 〉 =

∫ ∑
n

C∗n (t)φ∗n (q) F̂
∑
m

Cm (t)φm (q) dq

=
∑
m

∑
n

C∗n (t)Cm (t)

∫
φ∗n (q) F̂ φm (q) dq

=
∑
m

∑
n

C∗n (t)Cm (t)Fnm (234)

where

Fnm =

∫
φ∗n (q) F̂ φm (q) dq (235)

(2) There is another kind of uncertainty which is used in both classical and quantum

statistical mechanics. It arises from the lack of accurate knowledge of the system.

Imagine a system which has a number of degrees of freedom. It is impossible to

carry out experiments to measure the values of each variable and thus determine

the state of the system completely. The system then is described approximately

by specifying the mean values and corresponding probability distributions of

each variable.

If 〈Fα〉 is the mean value of the observable for the αth system, the mean of this

observable for N systems α = 1, 2, ....N is

〈F 〉 =
1

N

N∑
α=1

〈Fα〉

=
1

N

N∑
α=1

[∑
m,n

∑
Cα ∗
n (t)Cα

m (t)Fnm

]
(236)

Here we have two fold averaging. It comprises averaging due to the probabilistic

nature of the quantum description as well as statistical averaging. It should be

noted the averaging process has to be carried out as a single operation without

separating its constituents.

Consider αth system whose state can be described in terms of probability am-

plitude Cα
n (t). Then

C∗n (t)Cm (t) =
1

N

N∑
α=1

Cα ∗
n (t)Cα

m (t) = ρmn (237)
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would give the statistical mean value of the quantity C∗n (t)Cm (t) over all the

systems in the ensemble. Here ρnm is considered as the matrix element of a

statistical operator called density operator ρ̂ (t).The term density refers to the

fact that the diagonal element ρmm (t) = |Cmm|2 of the matrix represents the

probability that the state function φn (q) . the elements of the density matrix

depend on the representation. The final observable results, however, must be

independent of the representation.

Let us see how the density matrix can be used to calculate the mean value of

an observable F for the systems of an ensemble.

For a single system, the quantum mechanical mean value of F is

〈F 〉 =
∑
n,m

∑
Fnm C∗n (t)Cm (t) .

Therefore the mean value of F for all systems in the ensemble is

〈F 〉 =
∑
n

∑
m

Fnm C∗n (t)Cm (t)

Thus

〈F 〉 =
∑
n

∑
m

Fnm ρmn (238)

This is the quantum mechanical analogue of the classical expression given by

equation 229.

Following the rules of matrix multiplication,

〈F 〉 =
∑
n

[Fρ]nn = trace [Fρ] (239)

Hence, the integral over all phase space of a classical quantity is replaced in

quantum mechanics by the trace of the corresponding quantum mechanical ma-

trix.

This formula has the advantage that we can use any set of complete states for

evaluating the trace.

Liouville’s theorem in Quantum Statistical Mechanics

Let us investigate the rate of change of the elements of the density matrix

As

ρmn =
1

N

N∑
α=1

Cα ∗
n (t)Cα

m (t)

we get

dρmn
dt

=
1

N

N∑
α=1

(
Ċα ∗
n (t)Cα

m (t) + Cα ∗
n (t) Ċα

m (t)
)

(240)
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As

Ψα (q, t) =
∑
l

Cα
l (t)φl (q)

multiplying Ψα with φ∗n (q) and integrating with respect to q we get∫
φ∗n (q) Ψα (q, t) dq =

∑
l

Cα
l (t)

∫
φ∗n (q)φl (q) dq (241)

From the orthonormality of φn (q) it follows that

Cα
n (t) =

∫
φ∗n (q) Ψα (q, t) dq

Now
d

dt
(Cα

n (t)) =

∫
φ∗n (q)

∂

∂t
(Ψα (q, t)) dq

d

dt
(Cα

n (t)) =
1

i~

∫
φ∗n (q) ĤΨα (q, t) dq

from the Schrödinger equation for Ψα (q, t).

Therefore

Ċα
n (t) =

1

i~

∫
φ∗n (q) Ĥ

∑
Cα
l (t)φl (q)

Ċα
n (t) =

1

i~
∑
l

Hnl C
α
l (t) (242)

Similarly we get

Ċα ∗
n (t) = − 1

i~
∑
l

H∗nl C
α ∗
l (t) (243)

Substituting these expressions in 240 we get

ρ̇mn =
1

N

N∑
α=1

[
− 1

i~
∑
l

H∗nl C
α ∗
l (t) Cα

m (t) +
1

i~
Cα ∗
n

∑
l

Hnl C
α
l (t)

]

Since Hln = H∗nl as H is Hermitian, we get

ρ̇mn =
1

i~

[∑
l

Hml ρln −
∑
l

ρml Hln

]
(244)

ρ̇mn =
1

i~
[(H ρ)mn − (ρ H)mn]

Therefore

i~ ˙̂ρ =
[
Ĥ, ρ̂

]
(245)

in the operator form.

This is the quantum analogue of classical Liouville theorem.

95



Course MP 2.3 KSOU

Condition for Statistical Equilibrium

For a system in equilibrium, the corresponding ensemble must be stationary. That is

ρ̇mn = 0. This would be possible under the following conditions:

(a) when the density matrix is constant, or

(b) when the density matrix is a function of a constant of motion.

If the density matrix is constant, its elements will be given by

ρmn = ρ0 δmn (246)

That means all non-diagonal elements of the matrix will be equal to zero and all the

diagonal elements will be equal to a constant ρ0.

In the energy representation, the basic functions φn are eigenfunctions of the Hamil-

tonian Ĥ and hence the matrices H and ρ are diagonal

i.e. ρmn = ρn δmn

In this representation the density operator ρ̂ may be formally written as

ρ̂ =
∑
|φn〉 ρn 〈φn| (247)

To verify this consider an element ρkl

ρkl = 〈φk |ρ̂|φl〉

ρkl =
∑
n

〈φk |φn〉 ρn 〈φn|φl〉

ρkl =
∑
n

δkn ρn δnl = δkl ρk

which agrees with 246.

Therefore

i~ ˙ρmn =
∑
l

(Hml ρln − ρml Hln)

i~ ˙ρmn =
∑
l

(ρ0 Hml δln − ρ0 δml Hln)

i~ ˙ρmn = ρ0 (Hmn −Hmn) = 0

That means the distribution does not change with time and therefore the system is

in equilibrium under this condition.

So far as the condition (b) is concerned, if the time derivative of the statistical matrix

vanishes, the operator ρ̂ must commute with Ĥ. That means ρ is a function of a

constant of motion.
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10.4 Let us sum up

In quantum mechanics mixed states are best described in terms of the density ma-

trix. in quantum statistics the concept of uncertainty enters in two different ways.

In the first instance, quantum mechanical state functions lead to a probabilistic in-

terpretation for single systems. When we have an ensemble of states there is further

uncertainty due to the randomness of the elements of the ensemble. this double aver-

aging process leads to trace
(
F̂ ρ̂
)

as the mean value of an observable F in a statistical

state. There is a quantum analogue of classical Liouville theorem. It can be stated as

i~ ˙̂ρ =
[
Ĥ, ρ̂

]
. in equilibrium conditions the density matrix takes a diagonal form.

10.5 Key words

the density operator: It is defined as having matrix elements

ρmn =
1

N

∑
Cα ∗
n Cα

m

Ensemble: A collection of systems having a wide range of values of observables is

called an ensemble

10.6 Questions for self study

a) State and prove quantum Liouville theorem

b) Express the average value of an observable using density matrix formalism

10.7 Further references

1. B.B Laud, Fundamentals of Statistical Mechanics, New age international

ltd. New Delhi.

2. B.K. Agarwal and M.Eisner, Statistical Mechanics, New age international

ltd. New Delhi.

3. K. Huang, Statistical Mechanics, Wiley Eastern ltd., 1975.

4. Gopal ESR, Statistical Mechanics and properties of matter, McMillan India

ltd. New Delhi.

5. C. Kittel, Thermal Physics, Wiley Eastern ltd, 1969.

6. Landau and Lifshitz, Statistical Mechanics, Pergamon press.

7. F. Reif, Statistical Physics, McGraw Hill.
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UNIT 11

11 Ensembles and Distribution Functions

11.1 Objectives

11.2 Introduction

11.3 Types of ensembles

11.4 Let us sum up

11.5 Key words

11.6 Questions for self study

11.7 Further References

11.1 Objectives

After studying this unit you will be able to

• understand ensembles in quantum mechanics

• deduce quantum distribution functions

11.2 Introduction

There are three kinds of ensembles in quantum mechanics- micro-canonical, canonical

and grand canonical. They correspond to isolated systems and systems that can ex-

change energy as well as well as particles namely, Fermions and Bosons. Correspond-

ingly there are two different distribution function, called FD and BE distributions.
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11.3 Types of ensembles

The micro-canonical ensemble

In this ensemble we shall have system that are characterised by a fixed number of

particles, fixed volume and energy between E and E + δE. Let the total number of

states accessible to the system be Ω (E). The density matrix will be diagonal in the

energy representation. Hence

ρmn =

ρ0 δmn for states in (E,E + δE)

0 otherwise
(248)

The trace of ρ is equal to the number of states whose energy lies between E and

E + δE. That is

Trace ρ̂ =
∑
n

ρ0 = Ω (E) (249)

The entropy, which determines the thermodynamics of the system, is given by

S = K ln Ω (E) (250)

Gibbs paradox does not arise here as ∂Ω
∂E

is computed correctly by considering the

indistinguishability of the particles.

If Ω (E) = 1 then S = 0. It is consistent with Nernst theorem or the third law of

thermodynamics which states: “The entropy of a system at absolute zero temperature

is a universal constant which may be taken to be zero”. At absolute zero temperature

the system will be in its ground state. If this is unique, Ω = 1 and the system is going

to be found in the state. Complete order prevails and hence S = 0.

If Ω = 1 every system in the ensemble has got to be in one and the same state. Then

we say the ensemble is in a pure state. If Ω > 1 complete specification of the systems

is not possible and then the system is said to be in a mixed state.

If the ensemble is in the pure state, in the energy representation, there is only one

diagonal element ρnn and that is equal to 1, all other elements being zero. Then the

matrix satisfies

ρ2 = ρ (251)

In any other representation

ρmn =
1

N

∑
α

Cα ∗
n (t)Cα

m (t)

= C∗n (t)Cm (t) (252)

Therefore

ρ2
mn =

∑
l

ρml ρln =
∑
l

C∗l (t)Cm (t)C∗n (t)Cl (t)

= C∗n (t)Cm (t) = ρmn (253)
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Therefore ρ2 = ρ is a necessary requirement for a pure state.

The Canonical Ensemble

In this ensemble N and V are fixed but E is a variable quantity. The considerations

of classical statistics are applicable here in quantum statistics. The probability that a

system will possess energy En is given by Pn = Ce−βEn . Therefore the density matrix

in the energy representation is taken to be

ρmn = ρn δmn (254)

Since

Trace ρ̂ = 1

We will have ∑
C e−βEn = 1.

Therefore

C =
1∑
e−βEn

=
1

Z (β)
and ρn =

e−βEn

Z (β)
(255)

Where Z (β) =
∑
e−βEn = Trace

(
e−βĤ

)
is the partition function of the system.

Note that summation is over the states and not over the energy eigenvalues. Ĥ is the

Hamiltonian operator.

thus the density operator in this ensemble is

ρ̂ =
∑
n

|φn〉
e−βEn

Z (β)
〈φn|

=
e−βĤ

Z (β)

∑
n

|φn〉 〈φn|

=
1

Z (β)
e−βĤ (256)

The ensemble average of a physical quantity G is given in terms of its operator Ĝ as

〈G〉 = Tr
(
ρ̂ Ĝ
)

=
Tr
(
Ĝ e−βĤ

)
Tr
(
e−βĤ

) (257)

The other thermodynamic variables are given by

〈E〉 = Tr
(
ρ̂ Ĥ

)
and

〈F 〉 = −KT ln
(

Tr
(
e−βĤ

))
As a simple example consider a beam of photons with various polarisations travel-

ling along z axis. Let us determine the probability that the photon is found with

polarization along
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(a) x axis and

(b) y axis.

Let the state of polarisation in the x− direction be denoted by

|α〉 =

(
1

0

)
and the state of polarisation in the y direction by

|β〉 =

(
0

1

)
.

Then the state with polarisation angle φ with the x−axis will be given by

|ψ〉 = eia [cosφ |α〉+ sinφ |β〉]

|ψ〉 = eia

[
cosφ

(
1

0

)
+ sinφ

(
0

1

)]
where a is a phase factor.

The density matrix for the pure state is

ρ̂ =

(
cosφ

sinφ

)
(cosφ sinφ) =

(
cos2 φ cosφ sinφ

sinφ cosφ sin2 φ

)
(258)

Therefore the probability of finding the photon polarised in the x−direction is

〈α |ρ̂|α〉 = cos2 φ (259)

Similarly the probability of polarisation in the y−direction is

〈β |ρ̂| β〉 = sin2 φ.

The Grand Canonical Ensemble

In this ensemble both N and E are variables. By generalising the canonical ensemble

case, we can write for the density operator

ρ̂ =
1

Z (β, µ)
e−β(Ĥ−µn̂) (260)

Where µ is the chemical potential, n̂ is the number operator with eigenvalues 0, 1, 2, ......

and Z (β, µ) is the grand partition function given by

Z (β, µ) =
∑
r

e−β(Er−µnr)

= Tr
{
e−β(Ĥ−µn̂)

}
(261)
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The ensemble average of a physical variable G in the grand canonical ensemble is

given by

〈G〉 = Tr
(
ρ̂ Ĝ
)

=
Tr
{
Ĝ e−β(Ĥ−µn̂)

}
Tr
{
e−β(Ĥ−µn̂)

} (262)

The Quantum distribution functions

We have seen earlier the connection between symmetry of wave functions and the

types of particles. For Bosons the total wave function must be symmetric under ex-

change of any two Bosons while for Fermions the wave function must be antisymmetric

under particle exchange. As a consequence any number of Bosons can occupy a given

quantum state while only Fermion can occupy one quantum state.

Let us consider an ideal gas of N identical particles. Let s represent the state of a

single particle and S the state of the whole gas. Suppose that when the gas is in state

S, n1 particles are in state s = 1 with energy ε1, n2 particles are in state s = 2 with

energy ε2 etc. Then the total energy of the gas will be

Es =
∑
s

nsεs (263)

and the total number of particles will be

N =
∑
s

ns (264)

The partition function helps us in calculating physical quantities. It is given by

Z =
∑
s

e−βEs

the summation is over all possible states. While summing over states we have to keep

in mind the statistics obeyed by the particles.

Let us consider the cases separately

(a) MB Statistics

In this case the particles are distinguishable. The partition function is

Z =
∑
s

e−β
∑
nsεs (265)

The summation is extended over all possible ns values.

The mean number of particles in the state S is

〈ns〉 =

∑
s nse

−β
∑
nsεs∑

s e
−β
∑
nsεs

(266)
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〈ns〉 = − 1

β

∂

∂εs
(lnZ) (267)

The partition function can be written as

Z =
∑
s

e−β(εs1+εs2+........+εsn) (268)

where the summation is over all possible states of each individual particles

s1, s2.......etc. We can see that the summation is carried out in this manner

takes into account the distinguishability of of particles.

It can therefore be written as

Z =
∑

s1,s2.....

e−βεs1e−βεs2 .......

=

(∑
s1

e−βεs1

)(∑
s2

e−βεs2

)
.........

=

[∑
s1

e−βεs1

]N
(269)

Thus

lnZ = N ln

(∑
s1

e−βεs1

)
(270)

With this Z we get

〈ns〉 =
Ne−βεs∑
s e
−βεs

Clearly this corresponds to the earlier MB distribution.

(b) BE Statistics

Here the particles are indistinguishable. Grand canonical ensemble is most

suited for its study as the number of particles is not fixed. The grand partition

function is given by

Z =
∑
s

e−β(n1ε1+n2ε2+.....)+µβ(n1+n2+......) (271)

where the summation is over all possible states, hence over all possible number

of particles in each single particle state. The number of particles ni in each state

i will be 0, 1, 2, ...... subject to the condition
∑
ni = N.

Therefore

Z =

(∑
n1

e−β(ε1−µ)n1

)(∑
n2

e−β(ε2−µ)n2

)
........

But ∑
n1

e−β(ε1−µ)n1 = 1 + e−β(ε1−µ) + e−2β(ε1−µ) + ...... (272)
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This is a geometric whose sum can be found as∑
n1

e−β(ε1−µ)n1 =
1

1− e−β(ε1−µ)
.

Therefore

Z = Πi
1

1− e−β(εi−µ)
(273)

with

lnZ = −
∑
s

ln
(
1− e−β(εi−µ)

)
(274)

As

N =
1

β

∂ lnZ

∂µ

we get

N =
1

β

∂

∂µ

∑
s

ln
(
1− e−β(εs−µ)

)
Hence

N =
∑
〈ns〉

Therefore the average number of particles in the sth level is∑
〈ns〉 = − 1

β

∂

∂µ
ln
(
1− e−β(εs−µ)

)
=

e−β(εs−µ)

1− e−β(εs−µ)

=
1

eβ(εs−µ) − 1
(275)

The last expression gives the BE distribution function, i.e the number of particles

in the sth energy level.

Since the number of Bosons in any state cannot be negative eβ(εs−µ) must be

greater than unity for εs. The lowest energy for a single particle state of a Boson

gas is zero. Hence µ for an ideal Boson gas must be always negative.

For photons, when
∑
ns = N is not satisfied, the distribution formula can be

obtained by taking µ = 0. Then we get for photons

〈ns〉 =
1

eβεs − 1
(276)

(c) FD Statistics

For an FD gas the number of particles per energy state can be zero or one.

Therefore

Z =
(
1 + eβ(µ−ε1)

) (
1 + eβ(µ−ε2)

)
........

and so

lnZ =
∑
s

ln
(
1 + eβ(µ−εs)

)
(277)
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Hence the total number of particles

N =
1

β

∂ lnZ

∂µ
=
∑
s

〈ns〉 =
eβ(µ−εs)

1 + eβ(µ−εs)
(278)

Simplifying we get

〈ns〉 =
1

eβ(εs−µ) + 1
(279)

as the distribution function for the sth state. Therefore we notice that 〈ns〉 ≤ 1

for all energies.

The behaviour of the gas obeying FD statistics is different from that obeying BE

statistics. This difference becomes strikingly different as T tends to zero, when the

gas is in the lowest energy. In the case of BE statistics, since there is no restriction on

the number of particle state, the gas will have the lowest possible energy state. But in

the case of FD statistics, since we can place only one particle in any single state, even

though the gas has lowest energy, one is forced to populate higher energy states with

one particle each. Therefore the lowest energy of an FD gas will be higher than that

of BE gas at the same temperature. It leads to observable consequences like higher

pressure etc.

11.4 Let us sum up

The density for a micro-canonical ensemble satisfies ρ2 = ρ. For a canonical ensemble

the density matrix takes the form Z e−βĤ . The partition function for a grand canonical

ensemble can be written as Tr
{
e−β(Ĥ−µn̂)

}
. Using the grand canonical ensemble, it

is most convenient to deduce the familiar distribution laws for BE and FD gases. For

a BE gas µ has to be negative at all energies. For a photon gas µ = 0 and we get the

familiar Planck distribution function for the number of particles occupying a given

energy

11.5 Key words

The density matrix: Its matrix elements are given by

ρmn =
1

N

N∑
α=1

Cα ∗
n Cα

m

where the summation is over the elements of an ensemble

Partition function: It is denoted by Z, it is equal to∑
s

e−β(εs1+εs2+........+εsn)
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11.6 Questions for self study

a) Explain the features of a micro-canonical ensemble

b) Show that

〈F 〉 = −KT ln
(

Tr
(
e−βĤ

))
for a canonical ensemble

c) Deduce BE and FD distributions starting with a grand canonical ensemble.

d) Compare 〈ns〉 for BE and FD gases.

e) Comment on the properties of BE and FD gases at low temperatures.

11.7 Further references

1. B.B Laud, Fundamentals of Statistical Mechanics, New age international ltd.

New Delhi.

2. B.K. Agarwal and M.Eisner, Statistical Mechanics, New age international ltd.

New Delhi.

3. K. Huang, Statistical Mechanics, Wiley Eastern ltd., 1975.

4. Gopal ESR, Statistical Mechanics and properties of matter, McMillan India ltd.

New Delhi.

5. C. Kittel, Thermal Physics, Wiley Eastern ltd, 1969.

6. Landau and Lifshitz, Statistical Mechanics, Pergamon press.

7. F. Reif, Statistical Physics, McGraw Hill.
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UNIT 12

12 The Boltzmann limit and Partition Functions

12.1 Objectives

12.2 Introduction

12.3 The Boltzmann limit

12.4 Let us sum up

12.5 Key words

12.6 Questions for self study

12.7 Further References

12.1 Objectives

After studying this unit you will be able to

• understand the Boltzmann limit of Boson and Fermion gases

• know the partition function for ideal gas

• know the rotational partition function for a diatomic molecule

• know the vibrational partition function of a molecule

• know the electronic partition function for a molecule

12.2 Introduction

In the limit of high temperature and low densities we get Boltzmann distribution. It

is the same as the classical limit. The partition function of a molecule can be written

as a product of translational, rotational, vibrational and electronic functions. Let us

understand how these different partition functions are evaluated.
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12.3 The Boltzmann limit

We have seen that the occupation number of particles in an energy state εs is given

by

〈ns〉 =
1

eβ(εs−µ) ± 1
(280)

where the upper sign (+ sign) refers to FD statistics and the lower sign (− sign) refers

to BE statistics.

Let us suppose e−βµ � 1 i.e eβ(εs−µ) � 1 for all energy levels. Then

〈ns〉 '
1

eβ(εs−µ)
= eβµe−βεs (281)

Since 〈ns〉 = N , the total number of particles

eβµ
∑
s

e−βεs = N (282)

Therefore

eβµ =
N∑
s e
−βεs

(283)

Substituting this into 282 we get

〈ns〉 =
N e−βεs∑
s e
−βεs

(284)

Which is nothing but MB distribution. Therefore quantum statistics leads to Boltz-

mann distribution in the limit e−βµ � 1.

Since

µ = −KT ln

[(
2πm

h2β

) 3
2 V

N

]
we can express this limiting case as(

2πmKT

h2

) 3
2 V

N
� 1 (285)

This condition is clearly satisfied for high temperatures and low number densities.

The variation of the occupation number 〈ns〉 with β (ε− µ) in the three cases is shown

in figure 12.1.

As in the figure, for large values of β (ε− µ) the quantum curves (FD and BE) merge

into the classical curve (MB). For high T , ε−µ
KT

will be large only if µ is large and

negative. The classical limit can also be written as

1

λ3
T

V

N
� 1 (286)

108



Course MP 2.3 KSOU

 

 

 

 

 

 

  

� 

��   �� 

T  P 

��
 

��   �� 

T  P 

〈	
〉 

�
∈ −�� 

0 

�� 

�� 

�� 

Figure 12.1

where λT is the de Broglie wavelength at temperature T , i.e

λT =
h

(2πmKT )
3
2

.

λT is a measure of the spread in the wave functions of the particles. As long as λT is

much smaller than the average spacing
((

V
N

) 1
3

)
between particles, the statistics will

be classical.

A gas which can be treated classically is said to be non-degenerate. On the other

hand, quantum statistical distributions have to be used if the gas is degenerate. The

condition for a degenerate gas can be written as[
h2

2πmKT

] 3
2 N

V
� 1 (287)

This is sometimes called degeneracy criterion.

For instance electron gas in copper at room temperature is degenerate for typical

concentrations of electrons of the order 1028 m−3. On the other hand, atmospheric

gases at room temperature and normal pressures can be seen to be non degenerate.

The partition function for a gas

Let us consider an ideal gas having a large number of molecules (N) enclosed in a

volume V . The molecules can have translational, rotational, vibrational and electronic

energies. As a first approximation, we assume that the gas molecules do not have any

intermolecular forces. Hence the total energy can be written as

Etot = Etrans + Evibr + Erot + Eele (288)
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and hence the canonical partition function can be expressed as a product

Z = Ztrans . Zvibr . Zrot . Zele (289)

where the subscripts stand for translational, vibrational, rotational and electronic

types of partition functions, respectively.

For a monochromatic gas, there is no vibration or rotation and

Emol = Etrans + Eele

The translational partition function is calculated as follows. Let us assume that the

gas is enclosed in a rectangular box of dimensions Lx, Ly and Lz so that V = LxLyLz.

The energy levels of a particle in a box are given by

ε =
~2

2m

(
K2
x +K2

y +K2
z

)
(290)

where

Kx =
nxπ

Lx
, Ky =

nyπ

Ly
and Kz =

nzπ

Lz
.

Hence

ε =
~2π2

2m

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)
(291)

The partition function is given by
∑

s e
−βεs . For large Lx, Ly and Lz the energy levels

are closely spaces and therefore the quantisation of the energy levels can be neglected.

Hence the summation in
∑

s e
−βεs can be replaced by integration of the differential

1
h3

∑
s e
−βεsd3q d3P .

Therefore the partition function can be expressed as

Ztrans =
1

h3

∫
.....

∫
e−β

P2

2md3q d3P (292)

Clearly integration over d3q gives the volume V of the enclosure. Hence

Ztrans =
V

h3

∫ ∫ ∫
e−β

P2

2mdPxdPydPz

=
V

h3
(2πmKT )

3
2 (293)

For N particles the correct partition function is

Ztrans =

(
V

h3

)N
(2πmKT )

3
2 (294)

This result is the same as the classical result but for the fact that the Planck’s constant

h replaces the arbitrary cell volume assumed in the classical gas.

For a diatomic molecule we simply replace m by the sum of the masses of the atoms

involved. Thus

Ztrans =

(
V

h3

)
[2π (m1 +m2)KT ]

3
2 (295)

gives the diatomic translatory partition function.
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The Rotational partition function

In the first approximation, we may treat a diatomic molecule as consisting of a pair

of atoms with masses m1 and m2 separated by a fixed distance r0.

The energy levels of such a rotator is given by quantum mechanics as

Erot =

(
~2

2I

)
J (J + 1) (296)

where

I = µr2
0 =

m1m2

m1 +m2

r2
0

is the moment of inertia and J is the rotational quantum number that can take values

0, 1, 2, 3, ......

As (2J + 1) is the degeneracy of the J th energy level

Zrot =
∞∑
J=0

(2J + 1) e
−β
(

~2
2I

)
J(J+1)

(297)

Using θr = ~2
2KI

called the rotational characteristic temperature we can write

Zrot =
∞∑
J=0

(2J + 1) e−( θrT )J(J+1) (298)

We may consider two special cases depending on the temperature or moment of inertia.

a) For very small T or Im

Zrot ' 1 + 3e−
2θr
T + 5e−

6θr
T + ...... (299)

In this case, the thermal energy of the order of KT is not sufficient to popu-

late the higher rotational levels, almost all the molecules will be in the lowest

rotational state and hence all terms beyond the first few can be neglected.

b) For high temperature and not so small I.

In this case, the the spacing between consecutive levels is small compared to KT .

Therefore ε may be considered as a continuous variable in J . Thus summation

over J can be replaced by integration.

Putting x = J (J + 1) we get

Zrot =

∫ ∞
0

e
−
(
β~2u
2I

)
du =

2I

β~2
=

2IKT

~2
(300)

Hence the mean rotational energy

〈E〉 = −N ∂ lnZrot

∂β
= NKT (301)
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Therefore the contribution of rotational energy to the specific heat is

(CV ) = NK (302)

At lower temperature, the rotational states have to be treated as discrete. Then

Zrot =
∑

(2J + 1) e
−J(J+1)θr

T

has to be evaluated taking into account the symmetry character of nuclear wave

function.

Vibrational partition function

To a good approximation, the vibrational motion of a molecule may be taken to be

the simple harmonic type. the energy values of a simple harmonic oscillator are given

by

En = ~ω
(
n+

1

2

)
(303)

Therefore the vibrational partition function

Zvib =
∞∑
n=0

e−β~ω(n+ 1
2) (304)

This can be easily evaluated.

Zvib = e−
β~ω
2

∞∑
n=0

e−β~ωn

=
e−

β~ω
2

1− e−β~ω
(305)

In terms of a vibrational characteristic temperature θr = ~ω
K

this can be written as

Zvib =
e−

θV
2T

1− e−
θV
T

(306)

Therefore the mean vibrational contribution to the energy

〈EV 〉 = −N ∂ lnZvib

∂β
= NKT 2∂ lnZvib

∂T

= NKT 2 ∂

∂T

[
− θV

2T
− ln

(
1− e−

θV
T

)]
= NKT 2

[
θV
2T 2

+
e−

θV
T

1− e−
θV
T

θV
T 2

]

= NK

[
θV
2

+
θV

e
θV
T − 1

]
(307)
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Hence the specific heat

(CV )vib =
∂ 〈EV 〉
∂T

= NK

(
θV
T

)2
e
θV
T(

e
θV
T − 1

)2 (308)

At high temperatures θV
T
� 1 and using the expansion

e
θV
T ' 1 +

θV
T

+
1

2

(
θV
T

)2

upto second order terms.

For high temperatures

〈EV 〉 ' NKθV

[
1

2
+

1
θV
T

+ 1
2

(
θV
T

)2

]

' N~ω
[

1

2
+
T

θV

(
1− θV

2T

)]
' NKT +

N~ω
2

(309)

This leads to

CV = NK (310)

Electronic partition function

The electronic partition function is given by

Zel = g0 + g1e
−βε1 + g2e

−βε2 + ...... (311)

where ε1, ε2..... are the excitation energy levels and g1, g2..... are the respective degen-

eracies.

The values of energies ε1, ε2..... being generally much larger than the thermal energy

KT at room temperature, the molecules of most gases are hardly excited to higher

electronic states. Hence the electronic partition function can be represented with suf-

ficient accuracy by the first two terms in equation 311.

Thus

Zel ' g0 + g1e
−βε1 (312)

This leads to

〈Eel〉 ' NKT 2 g1e
−βε1

g0 + g1e−βε1

( ε1
KT 2

)
' Nε1

(
g0

g1

eβε1 + 1

)−1

(313)

and

(CV )el '
Nε21
KT 2

g0

g1

eβε1
[
1 +

g0

g1

eβε1
]−2

(314)
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As there is no significant contribution from the electronic energy to the specific heat

at ordinary tempeatures, the total temperature dependent energy of the gas is given

by

E =
3

2
NKTtrans +NKTrot +NKTvib

=
7

2
NKT (315)

Therefore, at ordinary temperatures the specific heat becomes

CV '
7

2
NK (316)

12.4 Let us sum up

Boltzmann limit (classical gas limit) of gases is obtained at high temperatures and

low densities. It also means the de Broglie wavelength of molecules is much smaller

than the mean separation between molecules.

The partition function for a non-interacting gas can be written as a product of trans-

lational, vibrational, rotational and electronic partition functions. Ztrans is the same

as the classical expression. The specific heat due to rotations at high temperatures

is equal to NK. The vibrational specific heat at high temperatures is also equal to

NK. The electronic contribution to specific heat is negligible at normal temperatures.

Hence the total specific heat is equal to 7
2
NK.

12.5 Key words

de Broglie thermal wavelength: denoted by λT it is equal to

h

(2πmKT )
1
2

.

Rotational characteristic temperature: It is given by

θr =
~2

2KI

where I is the moment of inertia of the molecule

Vibrational characteristic temperature: It is given by

θV =
~ω
K

where ω is the oscillatory frequency of the molecule
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12.6 Questions for self study

a) Obtain the Boltzmann limit of quantum distribution functions

b) State and explain degeneracy criterion

c) Deduce the vibrational contribution to the specific heat

d) Obtain the rotational contribution to the specific heat at high temperatures.

12.7 Further references

1. B.B Laud, Fundamentals of Statistical Mechanics, New age international ltd.

New Delhi.

2. B.K. Agarwal and M.Eisner, Statistical Mechanics, New age international ltd.

New Delhi.

3. K. Huang, Statistical Mechanics, Wiley Eastern ltd., 1975.

4. Gopal ESR, Statistical Mechanics and properties of matter, McMillan India ltd.

New Delhi.

5. C. Kittel, Thermal Physics, Wiley Eastern ltd, 1969.

6. F. Reif, Statistical Physics, McGraw Hill.
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Unit-13: The equation of state of an ideal Fermi gas Application of Fermi Dirac statistics to 

the theory of free electron in metals. 

13.1 Objectives 

13.2 Introduction 

13.3 Electron gas in Metals  

13.4   Let us sum up 

13.5 Key words 

13.6 Questions for self study 

13.7 Problems 

13.8 References for further study 

 

 

 

 

13.1 Objectives 

After studying this unit you will be able to understand the following aspects; 

 Equation of state of an ideal Fermi gas  

 Application of Fermi -Dirac statistics to the theory of free electrons in metals 

 

13.2 Introduction: 

Thermodynamics of an ideal gas is important in metals, in white dwarfs in simplified 

models of neutrons and quark stars in speculation about cosmological neutrinos, and in many 

parts of stellar structure and stellar atmosphere. In this unit we study the various examples of 

Fermions. The dominant common characteristic is the existence of Fermions, which is direct 

consequence of the Pauli Exclusion Principle. Free electron model for the physical properties 

of metals. It is the simplest theory for these materials, but still gives a very good description 

of many properties of metals which depend on the dynamics of the electrons. 

 The equation of state of a spineless ideal Fermi gas is obtained by eliminating Z from 

the following equation  
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First we study the behaviour of Z determined by the second equation (above) namely 

 

2

3

3
2

2

2
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It is monotonically increasing function of Z.  We have the power series expansion  
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For a large Z, an asymptotic expansion may be obtained through a method due to the 

Summerfield as follows: 

For convenience put Z e  so that  is related to the chemical potential  by  
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The last step is obtained through a partial integration. Expanding 
3 2y in a Taylor series about 

 we obtain  

 
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The second integral is of the order e  , Therefore  
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Apart from the factor t
n
, the integrand is an even function of t Hence In=0 for odd n. For n=0.  

We have  
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where (n) is the Riemann Zeta function. Some special values of which are  
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A graph of  3 2f Z versus Z is shown in following fig, any given +ve values of Z determined 

by eqn(2) can be read off such a graph. It is seen that Z increases monotonically as 

3

v
 increases. For fixed v, Z increases monotonically as the temperature decreases. 

 

Fig 1: The function 3
2
( )f z  
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(i) High Temperature and low Densities  
3

1


  
 

: 

For 
3

1


  
 

 the average inter-particle separation 
1

3 is much larger than thermal wave 

length . We expect quantum effects to be negligible. From equation (2) and (3)  
3 2

3 2

2
3 3

3 2

2

1

2

Z
Z

which may be solved to give

Z





 

 

   

 
     

 

 

Thus, Z reduces to that of the Boltzmann gas equation 
3

z




 
  

 

 when  3 0 T   . The 

average occupation number 
1

p
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
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



 
 

  

reduces to Maxwell- Boltzmann form. 
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Theeqn of state eqn then becomes
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This is the form of Virial expansion. The corrections to the ideal gas law, however, are not 

due to the molecular interactions, but to quantum effects. The second Virial co efficient in 

this case is   

3
3 2 2

5 2

1

22 mkT

  
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 


 

All other thermodynamic function reduce to those for a classical ideal gas plus small corrections. 

  

(ii) Low Temperature and High Densities 
3

1


  
 

: 

For
3

1


 , the average de-Broglie wavelength of a particle is much greater than the 

average inter particle separation. Thus, quantum effects, in particular, the effects of the 

Pauli‘s Exclusion principle become all important. 

 

In the neighbourhood of absolute zero, we have from equation (2) and equation (4)  
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where ,F the chemical potential at absolute zero, is called the Fermi energy  
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To study its physical significance, let us examine pn  near absolute zero  
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The physical meaning of this formula is clear. Because of the Pauli‘s Exclusion principle, no 

two particles can be in the same state. Therefore, in the ground state of the system, the 

particles occupy the lowest possible levels and fill the levels up to the finite energy F . Thus 

F is simple the single particle energy level below which there are exactly N states. In 

momentum space, the particles fill a sphere of radius PF, the surface of which is called the 

Fermi Surface. With the interpretation, let us now calculate the Fermi energy independently 

under more general conditions. Suppose all single particle energy levels are g-fold 

degenerate. For example, g=2s+1 for a particle of spin S. The condition determining F is 

then  

 
0

7p T
p

g n N


   

In view of equation (6) this states that there are N states with energy below the Fermi energy. 

Putting,  
2

2
F

F
P

m
  . We find,  

 

3

3

2 3
2 2

4

32

6

2

F

F

g N
P

V

Hence

m gv










 
   

 




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which reduces to equation (5) when g=1. We can also interpret equation (7) as follows: 

Particles with different Quantum numbers are not constrained by any symmetry requirement 

with respect to the interchange of these positions. Thus we may consider a system of N 

Fermions, each with degeneracy g, to be made up of g independent Fermi gases each with 

N/g particles whose energies are non-degenerate. 

To obtain the thermodynamic function for low temperatures and high densities, we first 

obtain the expansion for the chemical potential. From equation (1) and equation (4)  

  
22

log 1 ..................... 8
12

F
F

kT
kT kT Z






  
      
   

 

The expansion parameter is 
F

kT


. If we define the Fermi temperature TF, which is a function 

of density by  

                   F FkT   

then low temperature and high density means T<<TF . In this domain, the gas is said to be 

degenerate because the particles tend to go to the energy levels possible. For this reason, TF is 

also called the ‗degeneracy temperature’.  

The average occupation number is  

1

1p
pn

e
 




 

where  is given by (8). Since 
2

,
2p

P
m

  np depends on p only through P
2
. A sketch of np 

is shown in fig (2).  

    

Fig 2: Average occupation number in an ideal Fermi gas 

 

The internal energy is  
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4

3 0

4

2
p p p

p

V
U n dp p n

mh





    

After the partial integration we obtain  

 
 

5 6

2 3 2 2 3 20 0
9

54 20
1

p

p

p

V P V p e
U dp n dp

pm m
e

 

 



 


 



 
    

  
  

 

It is apparent from fig that 
pn

p




is sharply peaked at p=PF. In fact, at absolute zero it is a 

(delta) function at p=PF. Therefore the integral in equation (9) can be evaluated by 

expanding the factor P
6
 about p=PF. The procedure is similar to that used in obtaining 

equation (4) . After inserting   from equation (8), we obtain the asymptotic expansion  

 
2

23 5
1 .................. 10

5 12
F

F

kT
U N 



  
     
   

 

The first term is the ground state energy of the Fermi gas at the given density, as we can 

verify by showing the following  

2 3

2 5
F

F

p P

p
N

m




  

The specific heat at constant volume can be immediately obtained from equation (10)  

2

2

v

F

C kT

Nk




  

It vanishes linearly as T→0, thus verifying the third law of thermodynamics. We know that 

vC

Nk
approaches 3/2 as T→. Thus a rough sketch of vC

Nk
can be made as shown in fig 3. The 

fact that it is proportional to T at these low temperatures can be understood as follows. At a 

temperature t>0, pn differs from that at T=0 because a certain number of particles are 

excited to energy levels p F  . Roughly speaking, particles with energies of order kT 

below F  (see fig 2). The number of particles excited is therefore of the order of  FkT N  

therefore the total excitation energy above the ground state 
F

kTU NkT


    
 

from which it 

follows  

 V FC KT NK   
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Fig 3: Specific heat of an ideal Fermi gas 

 

From (equation 3
2

U PV ) and (equation 10) follows the equation of state  

222 2 5
1

3 5 12

F

F

U kT
P

V

 

 

  
      
   

 

This shows that even at absolute zero, it is necessary to contain the ideal Fermi gas with 

externally fixed walls because the pressure does not vanish. This is a manifestation of the 

Pauli‘s Exclusion principle which allows only one particle to have zero momentum. All other 

particles must have finite momentum and give rise to the zero point pressure.  

To obtain the thermodynamic function for arbitrary values of 
3


numerical methods must 

be employed to calculate the functions    3 2 5 2f Z and f Z  

13.3 Electron gas in Metals  

A metal can be considered to be composed of a system of fixed positive nuclei and a 

number of mobile electrons. These mobile electrons are assumed to move freely in the metal 

like the particles of a gas and constitute a perfect gas known as electron gas. On this 

assumption the classical statistics could explain to a certain extent the various properties of 

metals depending on the motion of free electrons in metal such as electrical and thermal 

conductivities, thermo electricity, thermionic emission, magnetic properties of metals and 

photoelectric effect etc. But in certain cases, the chief among them being specific heat of 

metals, very serious difficulties encountered in the use of Classical Statistics. That is why the 

theory of electron gas was discredited to some extent. 

Sommerfield, in 1928, however explained the electron theory of metals on the basis of new 

quantum statistics. According to him, the electrons in metals are not completely free but only 
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partially, in the sense that though they are not bound to any particular atomic system. Yet 

they are bound to the metal as a whole. Therefore the interior of the metal is to be conceived 

as a region of uniform potential, positive relative to free space, so that work is required to be 

done to extract an electron from the metal. Th electrons in metals cannot therefore be 

compared to the free particles of a gas obeying the classical statistics. More over due to their 

light mass and dense packing, the electrons in the metals should be assimilated to the 

particles of a gas under very high compression, hence to a degenerate gas. Further these 

electrons are assumed to obey Pauli‘s Exclusion principle; hence they should obey the Fermi 

Dirac statistics. Therefore to study the properties of the electron in metals at low temperature, 

we shall make use of the last section.  

For electron 1 2 1 2
2 sS so that g S     

 

2
2 33

: 0
2 4

F F
s

h n
the eqn

m Vg
 



 
   

 
; the Fermi energy at 0K.  

2 22 23 33 3

2 4 2 4 2
F

s

h n h n

m Vg m V


 

   
      

 

 
22 2 23

17 3 3

2
3

3

3
0.625 10 39

8

/
V

h n
joule or eV

m V

where

mn
kg m is the density of the electron gas

 




 
   

 

 
  
 

 

For conduction electrons in metals 
30.1 /kg m   

The Fermi Temperature TF for electron gas is  

 
 

22 3
5 3 2

3 5

0 3
4.52 10

8

0.1 / 10 .

F
F

F

h n
T K

K mk V

for kg m T K




 



 
    

 

 

 

Thus electron gas below 10
5
 K temperature is degenerate  

The degeneracy factor of an electron gas from equation (1) 

 

3

3 2

1
. .

2s

n h

g v mkT
  
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   

 
 

3 3

3 2 3 2

1 1
. . . .

22 2

0,

1 1
11

11 1

s

x
x

n h n h
A

g v vmkT mkT

AsT A

therefore
e e

A



 



 

 

 
 

 

and that for low temperatures  

 

 

13 2 2
3 0

3 2
1

2
3 0

1
. 2 .

24

s

A

v
n g mkT x dx

h

mkTV
x dx

h

















 

Here we have gs = 2 and have replaced its upper limit by A at low temperature near absolute 

zero. Since A→, when T→0 

 
33 2

2

3

2 2 32 23

5 2

24

3
2

3 3

2 8 82 .

mkTV A
n

h

h n h
A

mKT V m KT







 



   
    

   

 

This equation represents the degeneracy factor of electron gas at low temperature near 

absolute zero. Now substituting h=6.6X10
-34

 joule-sec, m=9X10
-31

 kg, k=1.38X10
-23

 

Joule/Kelvin and =0.1 kg/m
3
  

54.56 10
A

T


  

This means that at low temperature the electron gas is strong 

Zero point energy of the electron gas  

 

2 2 22 2 23 3 3

0

3 3 3 3 3 3 3
0

10 4 10 4 .2 40 5
P

s

nh n nh n nh n
E n

m Vg m V m V


  

     
        

    
 

Zero point pressure of the electron gas  

2 22 23 3

0

22 3

1 3 1 3
. .

5 4 5 8

3

20

s

n h n n h n
P

V m Vg V m V

nh n

mV V

 



   
    

  

 
  

 
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At normal temperature, the pressure of the electron gas comes out to be sufficiently high of 

the order =10
5
 atmosphere. 

The electronic contribution to the specific heat of metals at low temperature is given by  

 
 

 

2

2

3 5
1

5 12 0

1

2 0

v p
FV

V

F

E nkT
C n o

T T

kT
nk

T









       
                 

 
   

 



 

Where 
 

2 2

2 0F

nK 



 is constant quantity independent of temperature i.e., vC T  

Thus the electronic contribution to the specific heat is proportional to the absolute 

temperature and vanishes at the absolute zero.  

 

13.4   Let us sum up 

 In this unit we have understood  

 Equation of state of an ideal Fermi gas  

 Application of Fermi -Dirac statistics to the theory of free electrons in metals 

 Degenerate level Low temperatures and high densities 

 Degenerate level high temperatures and low densities 

 Electron gas in metal 

 

13.5 Key words:  Fermi gas; specific heat; Fermi Dirac; Fermions. 

13.6 Questions for self study: 

 Obtain an expression for Fermi energy in case of metals using FD statistics. 

13.7 Problems: 

1. Calculate the Fermi energy in electron Volt for Sodium, assuming that it has one free 

electron per atom. Given density of Sodium =0.97 g cm
-3

, atomic weight of Sodium is 23. 

Solution: The Fermi energy is given by  

 22 33
(0)

8
F

h n

m V




 
  

 
 



Course: MP 2.3  KSOU 

127 

 

Assuming one electron per Sodium atom, the electron density 
n

V
is given by  

0Nn

V W


  

But,  

    density of Sodium 
3 30.97 10 kgm   , atomic weight of Sodium = W=23, 

Avogadro number N0= 6 X 10
26

 atoms/kg-mol. 

28 32.53 10 /
n

electrons m
V
   

The Fermi energy (0)F is given by, 

 22 3

31

3
(0)

8

9.1 10

(0) 3.145

F

F

h n

m V

where m mass of electron kg

After substituting the values we get

eV








 
  

 

  



 

 

2. Show that the average energy at 0K will be 
3

5
 times the Fermi energy. 

Solution: The number of electrons in an electron gas having energies between 

and d   is given by 

1
2

3 ( )

8
( ) 2 (1)

1
F

kT

mV d
n d m

h
e
 

  
 






 

where m is the mass of electron.  

But, the Fermi energy (0)F is given by  

 

 

22 3

3
2

3

3
(0)

8

3 1
(0)

8 2 2

F

F

h N

m V

V N

m mh









 
  

 

 

 

Substituting this in equation (1), we get 

 
1

23
2

( )

3
( ) (0)

2
1

F
F

kT

d
n d N

e
 
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At  T = 0 all of the electrons have energies less than or equal to (0)F  (i.e., F  ) . So that 

at T = 0 we have 

( )

0
F

kTe e
 

   

Therefore, at absolute zero 

 
13

22
3

( ) (0)
2

F

N
n d d    


  

Total energy at absolute zero is 

 

(0)

0

0

(0)
33

22

0

( )

3
(0)

2

3
(0)

5

F

F

F

F

E n d

N
d

N





  

  













  

Hence, the average energy at absolute zero 

0
0

3
(0)

5
F

E
E

N
   

13.8 References for further study:  

 Statistical mechanics:  Kerson Haung. Massachusetts, Institute of technology, John 

Wiley and sons Singapore.  

 Thermodynamic and Statistical Physics: J.P Agarwal.  

 Statistical Physics-A survival Guide, by A.M.Glazer and J.S.Wark, 2001, Oxford 

University Press, New York.) 
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UNIT 14:  Degeneracy and magnetic susceptibility. 

 

14.1 Objectives 

14.2 Introduction 

14.3 The single- Particle Partition Function  

14.4 Degeneracy 

14.5 The Partition Function of a System 

14.6 Landau Diamagnetism 

14.7 Flux Quantization 

14.8 Magnetic susceptibility 

14.9 Let us sum up 

14.10 Key words 

14.11 Questions for self study 

14.12 Problems 

14.13References for further study 

 

 

 

 

14.1 Objectives 

After studying this unit you will be able to understand the following aspects; 

 The single- Particle Partition Function  

 Degeneracy 

 The Partition Function of a System 

 Landau Diamagnetism 

 Flux Quantization 

 Magnetic susceptibility 

 

14.2 Introduction 

In physics, a partition function describes the statistical properties of a system in 

thermodynamic equilibrium. They are functions of temperature and other parameters, such as the 

volume enclosing a gas. Most of the aggregate thermodynamic variables of the system, such as the 

total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or 

its derivatives. A microstate is a full specification of all degrees of freedom of a system. A system 
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may be conveniently defined as having N degrees of freedom confined to a volume V. In general, 

microscopic degrees of freedom are quantum numbers.  

 

14.3 The single- Particle Partition Function  

If we look at the equation above we notice that the particular term  exp /i B

i

k T  keeps turning 

up. We give it a special name- the Partition function denoted by the letter Z, which stands for the 

German ‗Zustandsumme‘ meaning ‗sum over states‘. We define,  

 exp 1i

Bi

Z
k T

             
 

  

Strictly speaking, the partition function we have written down is called the single partition function, 

Zsp, as it is independent of the total number of particles more of this later. For now, let us note an 

extremely important point: if we know the partition function for a particular system, we then know all 

of the thermodynamic functions. It is difficult to overstress the importance of this. If you know the 

formula for the partition function you know everything about the thermodynamics of the system. 

Consider, to take an example, an ideal gas if we knew the partition function of the gas we could 

immediately deduce the equation of state and the heat capacity. Lets say we told you that we had an 

ideal gas, with equation of state PV=RT. Given that information, what is its heat capacity? You might 

say 3R/2 (if you already knew the heat capacity of a monatomic gas) so the heat capacity (and vice 

versa); on the other hand as we shall show as we proceed, armed with the partition function of a 

system. We know everything about it the equation of state, heat capacity, formula for adiabatic 

expansion etc. The partition function contains all of the thermodynamics. Whilst this is truly 

remarkable, there is a sense in which we should not be too surprised. In order to construct the partition 

function we need to know the quantum levels of the system in question and clearly that piece of 

information must contain all of the pertinent physics. To put it another way, what else is there to know 

apart from the spectrum of the energy levels? 

Let‘s now write down our thermodynamic function in terms of the single- particle partition function - 

these are extremely important as they tell us how to get any thermodynamic potential from Zsp.  

 
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               




          
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Note the comparatively simple form of F in terms of Zsp. This is one of the beauties of F, the other 

main one being that it naturally leads us to the equation of state of the system as we shall see shortly. 

14.4 Degeneracy. 

Let us make our definition of the single particle partition function a little bit more general. You will 

recall that when we started out, we made the assumption that each energy level was associated with a 

different quantum state and on that basis was equally weighted. However we know from our 

knowledge of Quantum Mechanics that situations can arise when different quantum states both have 

the same energy: this is known as degeneracy. How do we deal with this? Consider fig (1) where we 

show an arbitrary system which has three different energy levels. In Fig 1(a) we assume that each 

energy level has one state associated with it- i.e., is non- degenerate. The partition function is clearly  

 31 2exp exp exp 6sp
B B B

Z
k T k T k T

                        
     

 

If we let the second and third energy levels get closer and closer together as shown in Fig 1 (b) they 

would eventually have same energy. And it would look as though we only had two energy levels, but 

there would still be three quantum states. The upper level would need to be counted twice as it has 

two states associated with it (it is now degenerate). This is the important point- it is the quantum states 

that are the entities that are given equal statistical weight, not the levels. So the partition function 

would in this case where the upper state is now doubly degenerate and 2 3,  be  

 1 2exp 2exp 7sp
B B

Z
k T k T

                  
   

 

In general, if the energy level i has gi quantum states associated with it (that is to say it is gi 

degenerate) then the single particle partition function is given by  

 1exp 8sp i
Bi

Z g
k T

             
 

  

where the sum is over the levels. 

It is this form of Zsp that should be used in equation (2) through (5). It should also be obvious that in 

the presence of degeneracy, the number of particles ni with energy i is now  

 exp 9i
i i

B

n Ag
k T

             
   
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14.5 The Partition Function of a System.  

Thus far we have considered the so called single particle partition function, defined as 

exp i
sp i

Bi

Z g
k T

   
 

 and then worked out thermodynamic potential such as 

lnB spF Nk T Z  . However it is also possible to define a partition function for the whole system 

which we denote by ZN. We assume that the energy level occupied by each of the N particles in the.  

 

Fig 1(a). Three non-degenerate energy levels. Giving rise to the partition function in equation (6) (b) two 

of the quantum states now have the same energy, and thus if we sum over energy levels the partition 

function is now given by equation(7) 

 system is independent of all the other particles, so that one particles is in say energy level i (which 

is gi degenerate), and so on. We can then think of the whole system of N particles being in some 

energy state, Em, where  

,m i j kE             

with a degeneracy gm  

..............,m i j kg g g g    

The partition function of the system is therefore  

 

     

exp

exp exp .......

N m m B

m

N

N i i B j j B sp

i j

Z g E k T

Z g k T g k T Z 

 

     



 
 

as there is a total of N terms. 
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We now can write lnB NF Nk T Z   . Similarly U and S are the same as before apart from the factor 

of N. Thus, for distinguishable particles  

   

 

 

 

2

10

ln
11

ln
ln 12

ln 13

N

N sp

N
B

N
B N B

B N

Z Z

Z
U k T

T

Z
S k Z k T

T

F k T Z

 


  




   



  

 

You are probably asking yourself why we bothered to do this. What was wrong with the previous 

formulae: equations (2) and (5). Well, nothing really: they are totally equivalent to those given above. 

Whether we use the equation for the single-particle partition function or those for the partition 

function of the whole system, we will still obtain the same results. However in many ways it is more 

useful to remember the equation for the partition function for a system. When we go on to deal with 

indistinguishable (rather than distinguishable) particles that obey Boltzmann statistics we will find 

that they also obey (11) to (13) and thus we only need to remember one set of equations. However, for 

indistinguishable particles, there is a difference relationship between the single particle partition 

function and that for the whole system- i.e., equation (10) does not hold for the indistinguishable 

particles. Finally even though we have assumed that each particle can occupy different quantized 

energy levels, this type of statistics is usually referred to as classical statistics. This admittedly 

somewhat confusing convention is used because even though the particles occupy quantized levels, 

the way in which we do the counting of number of arrangements is purely classical, because we can 

tell the particles apart just as we can tell classical billiard balls apart.  

14.6 Landau Diamagnetism  

Van Leeuwen‘s theorem states that the phenomenon of diamagnetism is absent in classical statistical 

mechanics. Landau first showed how diamagnetism arises from the quantization of the orbits of 

charged particles in a magnetic field.  

The magnetic susceptibility per unit volume of a system is defined to be  

 14
M

H



 


 

Where M is the average induced magnetic moment per unit volume of the system along the direction 

of an external magnetic field H: 
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 
1

15M
V H


            


 

where H is the Hamiltonian of the system in the presence of an external magnetic field H. for weak 

field, the Hamiltonian H depends on H linearly. In the canonical ensemble we have 

 
log

16NQ
M kT

H V


        


 

and in the grand canonical ensemble we have  

 
, ,

log
17

T V z

M kT
H V

  
    

  


 

where Z is to be eliminated in terms of N by the usual procedure. 

A system is said to be diamagnetic if  0   ; paramagnetic if 0  . To understand diamagnetism 

in the simplest possible terms, we construct an idealized model of a physical substance that exhibits 

diamagnetism. The magnetic properties of a physical substance are mainly due to the electrons in the 

substance. These electrons are either bound to atoms or nearly free. In the presence of an external 

magnetic field two effects are important for the magnetic properties of the substance (a) the electrons 

free or bound move in quantized orbits in the magnetic field. (b) the spin of the electrons tend to be 

aligned parallel to the magnetic field. The atomic nuclei contribute little to the magnetic properties 

except through their influence on the wave functions of the electrons. They are too massive to have 

significant orbital magnetic moments, and their intrinsic magnetic moments are about 10
-3

 times 

smaller than the electron‘s. The alignment of the electron spin with the external magnetic field gives 

rise to paramagnetism, whereas the orbital motions of the electrons give rise to diamagnetism. In a 

physical substance, these two effects compete. We completely ignore paramagnetism for the present, 

however. The effect of atomic binding on the electrons is also ignored. Thus we consider the idealized 

problem of a free spinless electron gas in an external magnetic field.  

Landau Levels: 

The Hamiltonian of a non-relativistic electron in an external magnetic field is  

 
2

1
18

2

e
H p A

m c

 
   

 


 

where e is positive (i.e., the charge of the electron is –e). The Schrödinger equation H   is 

invariant under the gauge transformation. 
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     

       exp 19

A r A r r

ie
r r r

c



  

 

 
   

 

   

  


 

where  r


 is an arbitrary continuous function. We consider a uniform external magnetic field H 

pointing along the z-axis and choose the vector potential via a gauge transformation if necessary, such 

that  

 , 0 20x y zA Hy A A                 

This is called ―choosing the gauge‖. The Hamiltonian then reads 

    
2 2 21

/ 21
2

x y zH p eH c p p
m

                   

We solve the Schrödinger equation by assuming a wave function of the form  

       , , 22x zi k x k z
x y z e f y


                    

where f(y) satisfies the equation for a harmonic oscillator: 

     

   

22 2 '

0 0

0

1 1

2 2

, 23

y o

o x

p m y y f y f y
m

eH y c eH k
mc

 



 
   

 

  

 

where 
2 2

.
2

zk
m

   


The natural frequency of the harmonic oscillator o  is the ―cyclotron 

frequency‖, that of a classical charge moving in a circular orbit normal to a uniform magnetic field. 

The energy eigenvalues are thus 

     
2

0

1
, , 0,1,2.......... 24

2 2
z

z

p
p j j j

m
 

 
             

 
  

where .z zp k  These are the Landau energy levels. Since they are independent of kx , they have a 

degeneracy equal to the number of allowed values of kx such that y0 lies within the container of the 

system.  
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Let us put the system in a large cube of size L, and impose periodic boundary conditions. The allowed 

values of kx are of the 
2

,xn
L


where 0, 1, 2,......xn     For yo to lie between 0 and L,  the values 

of nx must be positive and bounded by  

   2 25g eH hc L                  

which is the degeneracy of a Landau level. The proportionality to L
2
 reflects the fact that the 

projection of the electron orbit onto the xy plane can be centered anywhere in the plane without 

changing the energy. Thus when the external field is turned on, the energy spectrum associated with 

the motion in the xy plane changes from a continuous spectrum to a discrete one and the level spacing 

and degeneracy increase with the external field. This is illustrated in fig (2)  

 

Fig 2: Comparison of the energy spectra of a charged particle with and without magnetic field 

14.7 Flux Quantization. 

The Landau levels and the degeneracies derived above are all we need to calculate the partition 

function. However we take the opportunity to discuss flux quantization briefly to help us better 

understand the wave functions. 

Consider a plane with a hole in it, which contains a certain amount of magnetic flux  , as shown in 

fig (3). Suppose there is no magnetic field anywhere else. Then the vector potential in the plane must 

be ―pure gauge‖, i.e., of the form. 

A 
 

 

We cannot transform this to zero through any continuous gauge transformation because necessarily  

 . 26
C

dS A  
 
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Fig(3) charged particle moving in plane with a hole containing magnetic flux. The particle will not notice 

the flux if either (a) is in a localized state or (b) the flux is quantized in units of hc e
 

where the close path C encloses the hole, as indicated in Fig(2). A solution to (26) is  

 27
2




   

where  is the angle around the hole measured from some arbitrary axis. 

Now consider an electron moving in the plane with the boundary condition that its wave function 

vanish in the hole. In general it is affected by the flux because the Schrödinger equation involves A, 

which is non zero where the electron moves. But since A is pure gauge, we are tempted to try to 

remove it from the Schrödinger equation through the gauge transformation. 

     A r A r r 
   

 

In so doing, the wave function of the electron acquires the phase factor  

 exp exp 28
ie e

i
c hc




    
             
    

  

which is generally unacceptable because it will render the wave function discontinuous in space (for  

increases by 2 each time we go around the hole). The objection is circumvented under either of the 

following circumstance. 

(a) The electron is ―localized‖ i.e., its wave function is non-vanishing only in the neighborhood 

of some point. In this case where (28) might lead to a discontinuity, the wave function 

vanishes anyway. This is not relevant to free electrons. But may be relevant, for example, for 

an electron trapped by an impurity in a metal. 

(b) The electron is ―extended‖ with a wave function that is phase-coherent around a closed path 

about the hole but the flux is quantized in integer multiplies of the flux quantum.  

 0 29hc e              
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In this case, (28) becomes a periodic function of  and represents a legitimate gauge 

transformation. Thus the vector potential can be transformed away, and the electron does not 

―know‖ there is flux through the hole. This is the basis of the Aharanov-Bohm effect and the 

flux quantization in superconductivity which have been experimentally verified.  

The relevance of flux quantization to the Landau levels lies in the fact that the degeneracy 

(25) is just the total magnetic flux measured in units of the flux quantum: 

 
0

30g           


 

 

 

We have been working in a gauge in which the wave functions have definite linear momentum in the 

x direction. Thus the probability densities are independent of x and peaked about parallel ridges at 

y=y0. The spacing between successive values of y0 is hc/eHL , and hence the area of the strip in the xy 

plane between two neighboring ridges is hc/eH. Thus exactly one flux quantum hc/e goes through the 

strip.  

Since the energy levels are highly degenerate, we can make linear transformation on the wave 

functions belonging to the same Landau level to obtain equivalent sets. Such transformations are 

equivalent to gauge transformations. We can make them Eigen functions of angular momentum about 

z axis in which case the probability distributions will be peaked about circles in the xy plane about the 

z axis with exactly one quantum of flux going through the annular ring between two successive 

circles. We can also make them into individual orbitals whose centers form a regular lattice in the xy 

Fig (4) different bases for electron states in a Landau 

level, which is highly degenerate: (a) member wave 

functions are peaked at different elevations (y 

direction) and are eigen states of momentum in the x 

direction (b) member wave functions are eigen states 

of orbital angular momentum. They are peaked at 

concentric circles, with equal areas between 

successive circles. Each ring between circles supports 

one magnetic flux quantum. (c) Member wave 

functions are “vortices” of flux quanta forming a 

lattice.  
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plane. In this case each orbital will link exactly one flux quantum (a ―vortex‖). These different bases 

are illustrated in fig (4) 

  

The qualitative fact relevant to our immediate purpose is that the flux quantum sets a finite minimum 

size of an orbit, and thereby provides the escape from Van Leeuwen‘s theorem. 

 

14.8 Magnetic susceptibility: 

The grand partition function is  

   1 31ze 




    

where  denotes the set of quantum numbers {pz, j, } with =1…….g. Thus  
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To calculate the magnetization in the classical domain we take the high temperature limit. The 

condition (32) requires that z0 to keep N finite. Thus we expand the above equations in powers of 

z, and retain only the first order term: 
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where 
2

02 / / 2 .mkT and x kT     We keep only the lowest-order contribution in x: 
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To eliminate z, we note from (33) that to first order in z, N is the same as log  . Hence  

 3
37

N z

V 
             

Solving for z and substituting the result into (36), we obtain the final answer  

 
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1
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e

kTv mc


 
   

 



 

14.9 Let us sum up 

After studying this unit we have understand the following aspects; 

 The single- Particle Partition Function  

 Degeneracy 

 The Partition Function of a System 

 Landau Diamagnetism 

 Flux Quantization 

 Magnetic susceptibility 

 

14.10 Key words 

Partition function, Degeneracy, Diamagnetism, Flux quantization, Magnetic susceptibility 

 

14.11 Questions for self study 

 Define Magnetic susceptibility. Arrive at an expression for the same.  

 Write a note on flux quantization. 

 Describe Landau Levels in Diamagnetism.  

 Discuss the Partition Function of a System of micro particles. 

 Write a note on degeneracy.  

 

14.12 Problems:  

1. The energy of non-relativistic electrons in a small magnetic field is given by 

2

, 0
2

p s

p
s B

m
    where 1s    and 0 is the magnetic moment of the electron. Assume 

0 .FB   Note that in this problem we ignore the effect of the magnetic field on the orbit 
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of the electron, that turns out to be 0K in first approximation. Evaluate the magnetic 

susceptibility  in the following four cases: 

a. For T = 0. 

b. For ,B Fk T  one more term beyond (A). 

c. For T  . (Note: this one you can get without any detailed calculation). 

d. For B Fk T  , one more term beyond (C). 

Solution: 
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Unit-15: Application of Bose statistics to the photon gas, Derivation of Plank‘s Law, 

comments on the rest mass of photon. 

15.1 Objectives 

15.2 Introduction: 

15.3 Quantum to Classical Transition:  

15.4  Let us sum up 

15.5 Key words 

15.6 Questions for self study 

15.7 Problems 

15.8 References for further study 

 

 

 

15.1 Objectives 

After studying this unit you will be able to understand the following aspects; 

 Application of Bose statistics to the photon gas 

 Deviation of Plank‘s Law 

 Rest mass of photon 

 

15.2 Introduction: 

 Here we give a brief derivation of thermodynamic properties of electromagnetic 

radiation thermal equilibrium, which we regarded as gas of photons. We consider photons to 

be in a container of volume with heat insulating and perfectly reflecting inside walls. Thus 

the system is isolated and has a definite energy E. because photons do not interact with each 

other, a very small black body is assumed to be present in the container to absorb and emit 

photons, thus making thermal equilibrium possible. Photons absorbed at one frequency might 

be emitted at another and in different numbers to conserve energy, the total number N of 

photons in the system is not fixed, even thought the system is isolated.  

There are two essential respects, then, in which a photon gas differs from a gas of particles 

with non-zero rest mass. The photons do not interact with each other; so that in the photon 
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gas no approximation is made by neglecting inter particle interaction. The number particle is 

an isolated system is not conserved. 

Every physical body spontaneously and continuously emits electromagnetic radiation. 

Near thermodynamic equilibrium, the emitted radiation is nearly described by Planck's law. 

Because of its dependence on temperature, Planck radiation is said to be thermal. The higher 

the temperature of a body the more radiation it emits at every wavelength. Planck radiation 

has a maximum intensity at a specific wavelength that depends on the temperature. 

Classical physics (statistical thermodynamics) cannot explain the experimentally 

observed spectra of radiation. Classical physics assumed that radiation is emitted 

continuously by the matter with smooth continuous spectrum of all possible energy levels.) 

Particle or wave: The dual nature allows another description of the electromagnetic 

waves in terms of particles called photons. As a particle the photon can have a ≥rest mass≤, it 

can carry energy and momentum. The photon mass is considered to be zero. This conception 

turns out to be very powerful in building the most significant theory in physics in the same 

way like so many laws are established on the foundation of a point charge or a point body. In 

reality we may ask if the mass of proton in rest is really zero, or at least zero within the 

uncertainties of a real experiment. 

            Recently, one of the most discussing problems concerns the question about the mass 

of neutrino. Although the interactions involved are different and therefore totally different 

experiments are performed, the approach to the answer is the same: looking for evidence that 

can occur in the case of non-zero mass. As far as the future physics can learn from its history 

it is important to see how the problem of the photon mass was approached. 

            Some experiments are made, which results are equivalent to the catching and 

weighing of a proton. None of them has proved the rest mass to be zero, and indeed such a 

proof may be impossible. An experiment that fails to find a photon mass does not prove the 

mass is zero; it merely shows that the mass is less than the limit of accuracy of the 

experiment. These limits have approached so close to zero, and the most recent values are 

exceedingly small. One can hope that the next experiments will reveal evidence of a definite, 

nonzero mass. 

` The distribution of energy with wavelength or frequency in case of Black Body 

Radiation was investigated by Wein, Rayleigh, Jeans and Planck.  
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Wein‘s law is based on Classical Thermodynamics and Rayleigh- Jean‘s law is based 

on Classical Electromagnetic theory with the application of statistical mechanism.  

Now we shall derive Planck‘s law for distribution of energy with wavelength in case 

of blackbody radiation on the basis of Bose- Einstein statistics. If we have a hollow enclosure 

and the walls of which are maintained at a constant temperature T and a small hole is made 

on the wall of the enclosure. Radiation emitting out will be those which a perfect black body 

will emit at a Temperature T. These radiations carry energy in discrete units or quanta. 

According to quantum theory, radiation of frequency   has a quantum of energy h  

where h is Planck‘s constant and momentum h
c

 where c is the velocity of light. These 

quanta are known as photons and can be treated as particles. The radiation inside the hollow 

enclosure consists of a very large number of photons with different energies as these have 

different wavelengths or frequencies and supposed to form a photon gas. The distribution of 

energy among these photons inside the enclosure obeys the laws of statistics. Since the 

photons have integral spin angular momentum, they obey Bose-Einstein statistics. 

Although the total energy of the photons inside the hollow enclosure at a particular 

temperature T remains constant, the total number of photons within the enclosure may not 

remain constant. It is impossible that a photon of energy of 2 h  may be dissociated and two 

photons each of energy h  may be emitted. i.e., photons may be created or destroyed. In 

other words, for a photon gas system 

1

0
k

i

i

dn


  

Therefore the system has to satisfy only one condition, namely- the total energy of system 

remains constant (or)  

i iE n  = constant 

Or 

1

0
k

i i

i

dE dn


   

Now we can say that the black body is the one which absorbs all the radiations falling on it 

irrespective of the wavelength. Black body appears always black because it neither reflects 

nor transmits any radiation on its own. But upon heating it to certain temperature T, it emits 
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the radiation which is the characteristics of the temperature T. This radiation is quantised 

according to quantum theory. 

Here the black body may absorb the low energy photons and emit the high energy 

photons or vice versa implying the total number of particles (or) photons has no relationship 

with free energy of the system of the system i.e., =0  

Consider grand canonical partition function and keep =0 in it, we get  

 

 

0

1

0

1

exp

1

1 exp 1

i

i

i i
g i i i

ni

n

n

i
g

i

n
Q E n

kT

We know that

x x

Q
kT

















  
    

   

 

  
          

  







 

 

1

ln ln 1 exp

ln ln 1 exp 2

i
g

i

i
g

i

Q
kT

Q
kT






  

    
  

  
            

  





 

We know that the number of particles in the phase space in the momentum interval between p 

and p+dp given by  

 

2

3

2 2

3 2

2

3

4

4

4
3

V h
p dp p

ch

h
dp d

c

V h h
d

ch c

d
c

 



 



 



 



 

 

The above equation (3) holds well in case of gas molecules obeying Maxwell -Boltzmann 

statistics. 

In case of photon obeying BE statistics, the property of polarization of photons due to their 

wave character must be taken into account. The photons inside the constant temperature 

enclosure are of two types. 

1) Those having a left-handed polarization  
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2) Those having a right-handed polarization. 

The photons of the first type are indistinguishable among themselves, but can be 

distinguished from those of the second type on amount of different polarization, similarly for 

second type of particles. In other words the whole system can be considered to be made up of 

two subsystems one having photon with left-handed polarization and other having an equal 

number of photons with right handed polarization. Here is multiplying, because for energy E.  

There will be two transition modes. 

 

 

2

30

8
4

, 5i i

thenumber of particles V
d

in p and p dp c

Also we know h


 

 

 
 

 

 


 

Substituting equation (4) and (5) in equation (2), we get  

 2

3 0

8
ln ln 1 exp 6G

V h
Q d

KTh

 
 

   
     

  
  

We know that, the total energy of the system  

 

 

2

2 2

3 0

ln

8
ln 1 exp 7

G

d
E kT Q

dt

V d h
E kT d
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 





  
     

  


 

The spectral density of radiation is defined through  

   , 8
o

E V T d  


   

Here  ,T  is called the spectral density. 

From eqn (7) and (8) we can get 
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This equation is Planck‘s distribution law 
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15.3 Quantum to Classical Transition:  

Conversion of Quantum to classical equation can be done using Planck‘s distribution law  

Case (i):  

   

1

2

3

1,

8
, 9

h

kT
h h

if e
kT kT

T kT
c


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
 

 
 

        

 

This is Rayleigh-Jeans formula 

Case(ii): 

   3

3

1, 1

8
, 10

h h
kT kT

h
if e e

kT

T h
c

 


  

  

 

 

Equation (10) is found to reach maximum value at a frequency given through the relation 

max

min
min

min

2.822

2.822
(2.822)

h c
where

kT

hc hc
or T constant

kT k

T constant











 

  



 

This is Wein‘s displacement law  

If e(,T) is emissivity i.e., the amount of energy coming out per unit area per unit time from 

the cavity in the black body  
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The average energy coming out from the black body per unit area per unit time is  
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 
3

1
3

3 0

2
1xh kT kT

x e dx
h hc

    
    

   
  

 

 

43

3 0

44

3

5 4 4

3 3

4

2

1

2

15

2

15

'

x

h x kT
dx

hc e

h kT

hc

k T
e T

h c

or e T T Stefan s law



 





  
  

  
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It states that the emissivity of black body is directly proportional to the fourth power of the 

absolute temperature where  

5 4

3 3

2

15

K

h c


  is called Stefan‘s constant  

The above equation represents the conversion of quantum to classical statistics equation. The 

expression from Planck‘s radiation law to Stefan-Boltzmann law clearly explains the 

Quantum to classical transitions. 

 

What is the rest mass of photon? Apply E= mc
2
 to photons (v= c)  

2

2 2
1 0

E E v
m

cc c

 
    

 
 

For a particle with zero rest mass the energy momentum relationship  

 
2

2 2 2 2E P C mc becomes E PC    
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The momentum of the photon is then 
E hf h

P
c c 

    

 Meaningless Question since a photon cannot be brought to rest. 

 Zero 

 E=mc
2
 and E=hf , so 2

hf
m

c
  

 The same as its relativistic mass. 

 It must be non zero, since ―the Higgs particle gives mass to all particles‖ 

 

15.4  Let us sum up 

 In this unit we have understood  

 Black body radiation 

 Photon gas,  

 Planck law 

 Wein‘s displacement law  

 Quantum classical transition 

 Rest mass of photons, 

 

15.5 Key words:  Photon gas, Planck law Rest mass of photons 

 

15.6 Questions for self study:  

 Using BE Statistics derive Planck‘s law of black body radiation. 

 Show that in the long wavelength limits the Planck‘s law leads to Rayleigh-Jean‘s law 

 

15.7 Problems: 

1. Find the number of photons per mm
3
 in a cavity containing black body radiation at 300K. 

Solution: Number of photons in a volume V is given by  

3

23 34 8

2.405 8

,

1.38 10 / , 300 , 6.625 10 , 3 10 / ,

546027.26

kT
N V

hc

with

k J K T K h Js c m s

we get
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 

 
   

 
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
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2. How many photons are there in 1cc of radiation at 727
0
C temperature? Find their average 

energy. 

given :

 

2

0
2.405

1x

x
dx

e





  

Solution: Number of photons per unit volume in the frequency interval and d   is 

2

3

8
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1
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d
n d

c
e
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Therefore, the total number of photons/unit volume having all frequencies is: 
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Also,  
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5 4

4

3 3

8

15

k
E T

c h


  

Number of photons per unit volume, 
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Now, the average energy of each photon 
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UNIT 16: thermodynamics of black body radiation, Bose-Einstein condensation. 

16.1 Objectives 

16.2 Introduction 

16.3 Bose Einstein Condensation  

16.4  Let us sum up 

16.5  Key words 

16.6 Questions for self study 

16.7 Problems 

16.8 References for further study 

 

 

 

16.1 Objectives 

After studying this unit you will be able to understand the following aspects; 

 thermodynamics of black body radiation 

 Bose-Einstein condensation. 

 

 

16.2 Introduction: 

Thermodynamics of Black body Radiation  

A blackbody (sometimes spelled "black body") is a theoretically ideal radiator and 

absorber of energy at all electromagnetic wavelength s. The term comes from the fact that a 

cold blackbody appears visually black. 

The energy emitted by a blackbody is called blackbody radiation. This takes the form 

of an electromagnetic field having an intensity-versus-wavelength relation whose graph looks 

like a skewed, bell-shaped statistical curve. The maximum point on the curve shows the 

wavelength at which the radiation intensity is greatest. This wavelength depends on the 

thermodynamic temperature, in Kelvin‘s, of the object. The higher the temperature, the 

shorter the wavelength at which the radiation is most intense. The wavelength and 

temperature are related by a function involving Wien's constant. 

Scientists attempt to determine the temperatures of distant objects in space by 

observing their blackbody radiation. The calculations are made by assuming that celestial 
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objects behave as perfect blackbodies. A blackbody is a theoretical ideal, but many 

astronomical objects come reasonably close to this ideal. 

Bose-Einstein condensate (BEC), a state of matter in which separate atoms or 

subatomic particles, cooled to near absolute zero (0 K=  -273.15 °C, or − 459.67 °F; K = 

Kelvin), coalesce into a single quantum mechanical entity—that is, one that can be described 

by a wave function—on a near-macroscopic scale. This form of matter was predicted in 1924 

by Albert Einstein on the basis of the quantum formulations of the Indian physicist Satyendra 

Nath Bose. 

We have already known the various distribution functions of black body radiation, the 

Planck‘s distribution, Rayleigh-Jeans formula and Wien‘s displacement law. Now we 

calculate the thermodynamic quantities of black body radiation for =0(the zero chemical 

potential makes the free energy F equal to the thermodynamic potential). The 

thermodynamic potential k of the K
th

 state is:  

( )

ln 1
k

kT
k kT e

  
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Taking =0 and summing over all quantum states, we have  
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 The number of quantum states of the photons with frequency between 
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Putting x
kT

  as a variable of integration, we obtain, 
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This integral can be evaluated with the help of -function and is equal to
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2 4
5 4

3 2

,

5.67 10 deg
sec60

where

k gm
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

 

is called the Stefan- Boltzmann constant. The entropy S is  

316

3

F
S VT

T c


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

 

Thus entropy is proportional to the cube of the temperature  

The total energy of the radiation  

E=F+TS  

From equation  

44
3E VT F

c


    

Thus, the total energy of the black body radiation is proportional to the 4
th

 power of 

temperature. 

 Boltzmann law the specific heat of the radiation  
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Cv is also proportional to the cube Temperature the pressure  
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The total number of photons in the black body radiation is  
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With the help of  function given  
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2 1where S    

S is the spin of the electron and hence  
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. This energy has a simple 

thermodynamic meaning. 

The Fermi-Dirac distribution function is  
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This tends to zero for    as T→0. The total energy of the gas is obtained by multiplying the 

number of states 
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Integrating over all momenta 
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Substituting the value of P0 we have  
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Now we use the ideal gas relation of pressure P and volume V with energy E, 2
3

PV E .  

This gives  
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m V





   
    

   


 

These equations are used as approximations for temperature sufficiently close to absolute 

zero( for given density of gas). The condition of strong degeneracy of the gas requires  kT to 

be small compared with the lowest energy 0  

22 3N
kT

m V

 
  

 


 

This condition is the condition opposite to the Boltzmann statistics and should be appreciable. 

The temperature kT0= 0  is called the degeneracy temperature.  
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16.3 Bose Einstein Condensation  

In 1924 Einstein pointed out that bosons should condense unlimited numbers into a 

single ground state, since they are governed by Bose- Einstein statistics. For an ideal Bose 

Einstein gas transitions occur at a certain low temperature above which the atoms distribute 

themselves on the various energy levels in the usual way but below which a certain fraction 

of atoms fall into the ground state. This fraction increases from 0 at the transition temperature 

to unity as temperature approaches absolute zero. This phase transition is known as  Bose– 

Einstein condensation. 

When Helium is cooled to a critical temperature of 217K, a remarkable discontinuity in heat 

capacity occurs. The liquid density drops and a fraction of the liquid becomes a zero viscosity 

super fluid.  

A condensation effect is also credited with producing super conductivity. In the B.C.S 

theory, the pairs of electron are coupled by lattice interactions and the pairs (cooper pairs) act 

like Bose and can condense into a state of zero electrical resistance. 

The condition for achieving a Bose Einstein condensation is quite extreme. The 

participating particles must be considered to be identical and this is a condition that is 

difficult to achieve for whole atoms. The condition of indistinguishability requires that the 

de- Broglie wavelength of the particles shall overlap significantly and this requires extremely 

low temperature and also requires fairly high particle density to narrow the gap between the 

particles. 

In general, for fermions and classical gas, the excitation of the particles will be coming down 

to the ground state gradually when we decrease the temperature of the system. But in the case 

of Bosons, because the condensation observed, this change takes place very fast. 

The average number of particles with energy Ei is given by  

 

1

1 1
i

E

kT
i i

i

n e where n N




 
     
 
 

    

Replace the summation by integration to know the number of particles whose momentum lies 

between p and p+dp in phase space  
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 

2 1

2
2

3 0

4
1 2

p

m
kT

V
N e p dp

h











 
 
    
 
 
 

  

where h
3
 is the phase cell size  

Set =0 in equation (2) to find Tc  

 

1
2

2

3 0

4 2exp 1 3

p
V mN p dp

kTh








  
  

     
  

  
  

  

 
2 32 2 22, & 2

2
c

c

p
Put x p dp mkT x dx

mkT
   

 2

3 22
3 0

4 1
2

1
cx

V
N mkT x dx

h e

  
   

 
  

 
3

2
3

4
2 2.612

4
c

V
N mkT

h

 
   

 

22 3

22 3

2
2.612

4
2 2.612

c

c

or

h N
mkT

V

or

h N
T

mk V





 
  

 

 
  

 

 

Equation (4) is obtained by assuming =0 at T=Tc. 

Now let us consider 

 1

0 0

exp 1

i

i

and

E
N

kT

 




 

  
   

  


 

Because in equation (3) we have included the ground state term, which is to be separate  

Consider the integral in equation (3)  

1
2

2

3

2

4
exp 1 0

2

0 0
2

c

i

V p
p dp I

mkTh

P
Here E I

m




 
      

  

   


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 

1
2

2
0 3

4 2exp 1 5

p
V mN n p dp

KTh





  

  
     
  

  
  

  

1
2

2
0 3

0 (5)

4
1

2

put in equation

V p
N n p dp

mkTh








  
     

   


 

   
3

2
0 3

4 2.612
2 6

4

V
N n mkT

h


    

22 3

. . (4)

2 2.612
c

But w k t from equation

h N
T

mk V

 
  

 

 

3
2

2

2

2.612

CmkTN
V

h




 
  

 
 

 
3

23
2

0 3 2

3
2

24 2.612
2

4 2.612

C
C

o
C

mkTN
N n mkT

h h

T
N n N

T


 


 

    
 

 
   

 

 

 

3
2

0

0

0

1 7

0;

; 0

C

c

T
n N

T

AtT n N

AtT T n

 
  

    
  

 

 

 

 

Here we see that in the range of temperature T<<Tc there is a rush of particles towards the 

ground state and at T=0 the total number of particles will be present at ground state only. 

This type of phase change in momentum space i.e., from finite to zero momentum state is 

called Bose-Einstein condensation.  
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16.4  Let us sum up 

 In this unit we have understood  

 Thermodynamic Black body radiation 

 Bose-Einstein condensation 

 

16.5  Key words:  Black body radiation, Planck distribution Wein‘s displacement law,  

                               Chemical potential, Fermi Dirac distribution, Bosons 

 

16.6 Questions for self study: 

 Explain thermodynamic black body radiation.  

 Discuss the Bose-condensation of a system of N bosons occupying a volume V.  

 Obtain expression for the transition temperature TBE below which condensation 

occurs. 

 

16.7 Problems: 

1. Black body radiation in a box of volume V and at a temperature T has internal energy 

4U V T and pressure 41

3
P T , where  is Stefan- Boltzmann constant 

a) What is the fundamental equation for the black body radiation (entropy) 

b) Compute the chemical potential 

 

Solution:  

a) Let us first find the Helmholtz free energy: 

From the relation, 
T

A
P

V

 
  

 
we get , 

A = 41 1

3 3
PV V T U      

Consequently, 34 4

3 3V

A U
S V T

T T


 
    

 
 

As a result, 

( , ) ( , ) ( , )

( , ) ( , ) ( , )V

S S V S V T V

U U V T V U V

    
  

    
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               = 
1

V

V

S

T

U T

T

 
 
  

 
 
 

 

b) Since A is N- independent, 0.   

2. Electromagnetic radiation in an evacuated vessel of volume V at equilibrium with the walls 

at temperature T (black body radiation) behaves like agas of photons having an internal 

energy 
4U V T and pressure 41

3
P T , where  is Stefan- Boltzmann constant 

a) Plot a closed curve in the P-V plane for a Carnot cycle using black body radiation 

b) Derive explicitly the efficiency of Carnot engine which uses a black body radiation as        

its working substance  

Solution:  

a) The plot of Carnot cycle with black body radiation is: 

 

b) Let us start with isotherms. At the isotherm, the pressure is V-independent.  Thus the 

isotherms are horizontal. See the figure. Along the first isotherm path  

4
1 2 2 1

4 2
1

1

4
( )

3

4
1 (1)

3

h

h

Q U P V T V V

V
T V

V





      

 
  

 

 

In a similar way, 

4 3
3 4 4

4

4
1 (2)

3
h

V
Q T V

V


 
  

 
 

Now, let us consider an adiabatic path. Along an adiabatic path, 
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3 4 4

3 4

1
0 4

3

4
4

3

dQ dU PdV VT dT T dV T dV

VT dT T dV

  

 

     

 

 

Consequently, 

31

3

dT dV
VT

T V
   = constant, 

4
3PV = constant. 

Let us start from the point 2 characterised by the values P1, P2 and adiabatically 

expand the gas to the point 3 characterised by the volume V3. We have, 

3 3 3 3
2 3 1 4

3
2 1

3
4

;

(3)

h c h c

c

h

V T V T and V T V T

TV V

V V T

 

  
 

Combining (1), (2) and (3), we get 

4 3
1 2 3 4 1

4

4
1 1

3

c
h

h

V T
W Q Q T V

V T
 

  
        

  
 

Remember: along a closed path 0U  and the total heat consumption is equal to 

mechanical work on the 

4 2
1 2 1

1

4
1

3
h

V
Q T V

V


 
  

 
 

As a result: 

1 2

h c

h

T TW

Q T





 

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